林业科学 ›› 2025, Vol. 61 ›› Issue (8): 96-105.doi: 10.11707/j.1001-7488.LYKX20240523
王智勇1,2,周梦岩1,陈文义1,2,麻文俊1,王军辉1,张一2,吴创业5,罗志斌1,3,4,周婧1,*()
收稿日期:
2024-09-08
出版日期:
2025-08-25
发布日期:
2025-09-02
通讯作者:
周婧
E-mail:gaha2008@126.com
基金资助:
Zhiyong Wang1,2,Mengyan Zhou1,Wenyi Chen1,2,Wenjun Ma1,Junhui Wang1,Yi Zhang2,Chuangye Wu5,Zhibin Luo1,3,4,Jing Zhou1,*()
Received:
2024-09-08
Online:
2025-08-25
Published:
2025-09-02
Contact:
Jing Zhou
E-mail:gaha2008@126.com
摘要:
目的: 研究楸树无性系在不同土壤含氮量下生物量和氮素利用效率的变异规律,结合无性系与环境互作效应相关分析,筛选可以推广的高生产力且高氮利用效率的优良无性系,为楸树养分资源高效无性系的选择和应用提供理论依据。方法: 以3个试验地点6年生13个楸树无性系为研究对象,利用异速生长模型计算其生物量,通过对氮含量的测定,计算氮素利用效率,并对无性系的变异规律进行分析。利用ASReml-R程序包拟合混合效应模型,得到3个试验地点13个楸树无性系生物量与氮素利用效率的 BLUP 数据,使用可视化BLUP-GGE 双标图对其进行适应性和稳定性分析。结果: 3个试验地点土壤含氮量具有显著差异(P<0.05),由高到低依次为曹县、永城和牡丹区。不同无性系的生物量、氮素利用效率在同一地点具有极显著差异(P<0.01),同一无性系的生物量、氮素利用效率在不同地点也具有极显著差异(P<0.01),对2个指标分别进行排序,发现无性系6-7、008-1、1-3和2-8的生物量在3个试验地点均较高,无性系8401、6-7、2-8和20-01的氮素利用效率在3个试验地点均较高。对不同无性系的适应性分析发现,无性系2-8在牡丹区和曹县地点适应性最强,无性系1-3在永城地点适应性最强。对不同无性系高生产力与稳定性分析发现,无性系6-7和2-8为生物量与氮素利用效率较高且在3个试验地点较稳定的优良无性系;无性系1-3为生物量与氮素利用效率较高但氮素利用效率稳定性一般的无性系;008-1为生物量较高但氮素利用效率较低且稳定性一般的无性系。结论: 基于不同土壤含氮量下对13个楸树无性系生物量与氮素利用效率的排序结果,结合BULP-GGE双标图中适应性、高生产力和稳定性分析,筛选出无性系6-7和2-8为生物量和氮素利用效率双高型无性系,可栽植范围较广;无性系1-3为低氮高效型无性系,可栽植在牡丹区等土壤含氮量较低的地点;无性系008-1为高氮高效型无性系,可栽植在曹县等土壤含氮量充足的地区。
中图分类号:
王智勇,周梦岩,陈文义,麻文俊,王军辉,张一,吴创业,罗志斌,周婧. 楸树高产高氮利用效率无性系筛选及G×E互作分析[J]. 林业科学, 2025, 61(8): 96-105.
Zhiyong Wang,Mengyan Zhou,Wenyi Chen,Wenjun Ma,Junhui Wang,Yi Zhang,Chuangye Wu,Zhibin Luo,Jing Zhou. Selection of Catalpa bungei Clones with High Productivity and High Nitrogen Utilization Efficiency and Analysis of G × E Interaction[J]. Scientia Silvae Sinicae, 2025, 61(8): 96-105.
表1
试验地点环境概况"
地点 Site | 年均气温 Average annual temperature/℃ | 年均降水量 Average annual precipitation/mm | 年均湿度 Average annual humidity (%) | 年均日照 Average annual sunshine/h | 土壤含氮量 Soil nitrogen content/(g·kg?1) | |
0~30 cm | 30~60 cm | |||||
牡丹区 Mudanqu | 16.01 | 712.79 | 58.16 | 1 574.62 | 0.25 | 0.14 |
永城 Yongcheng | 16.25 | 860.87 | 66.09 | 1 534.28 | 0.55 | 0.40 |
曹县 Caoxian | 16.24 | 756.56 | 59.40 | 1 563.02 | 0.86 | 0.49 |
表2
楸树无性系来源"
编号 Number | 无性系 Clone | 来源 Source |
1 | 8401 | 天然优选Natural selection |
2 | 8402 | 天然优选Natural selection |
3 | 6-7 | 天然优选Natural selection |
4 | 8-11 | 天然优选Natural selection |
5 | 008-1 | 杂交(7080×3065)Hybridization (7080×3065) |
6 | 1-1 | 杂交(4001×金丝楸)Hybridization (4001×Jinsiqiu) |
7 | 1-3 | 杂交(4001×金丝楸)Hybridization (4001×Jinsiqiu) |
8 | 2-6 | 杂交(4002×金丝楸)Hybridization (4002×Jinsiqiu) |
9 | 2-7 | 杂交(6523×金丝楸)Hybridization (6523×Jinsiqiu) |
10 | 2-8 | 杂交(4002×金丝楸)Hybridization (4002×Jinsiqiu) |
11 | 19-01 | 杂交(5-8×6-8)Hybridization (5-8×6-8) |
12 | 19-27 | 杂交(5-8×6-8)Hybridization (5-8×6-8) |
13 | 20-01 | 杂交(6-1×6-8)Hybridization (6-1×6-8) |
表3
不同地点下无性系生物量的差异①"
无性系 Clone | 牡丹区 Mudanqu | 永城 Yongcheng | 曹县 Caoxian | 均值 Avg. | 标准差 SD | 变异系数 CV (%) |
8401 | 34.97±5.74ef | 54.43±14.36de | 55.59±14.68bcd | 48.33 | 11.59 | 23.97 |
8402 | 31.22±2.5ef | 67.25±16.96cde | 62.56±13.37bc | 53.67 | 19.59 | 36.49 |
6-7 | 56.71±13.82bcd | 83.29±25.48abc | 61.16±7.56bc | 67.06 | 14.23 | 21.22 |
8-11 | 34.3±8.06ef | 48.69±9.11e | 43.89±8.47d | 42.29 | 7.33 | 17.33 |
008-1 | 77.81±5.64a | 84.08±7.35abc | 65.91±6.15b | 75.93 | 9.23 | 12.16 |
1-1 | 44.79±8.87cde | 67.78±4.36cde | 82.58±4.25a | 65.05 | 19.04 | 29.27 |
1-3 | 71.9±15.06a | 94.29±9.39ab | 61.84±2.9bc | 76.01 | 16.61 | 21.85 |
2-6 | 65.52±13.61abc | 68.4±17.43cde | 48.07±4.76d | 60.66 | 11.00 | 18.13 |
2-7 | 47.79±11.73cde | 86.6±18.57abc | 52.87±4.99cd | 62.42 | 21.09 | 33.79 |
2-8 | 70.13±12.44ab | 76.55±7.01bcd | 78.78±3.91a | 75.16 | 4.49 | 5.97 |
19-01 | 23.79±8.11f | 103.99±12.73a | 55.49±5.9bcd | 61.09 | 40.39 | 66.12 |
19-27 | 51.42±16.84cde | 70.21±15.15cde | 63.2±11.25bc | 61.61 | 9.50 | 15.41 |
20-01 | 40.86±0.42def | 56.84±24.62de | 55.72±9.85bcd | 51.14 | 8.92 | 17.44 |
均值 Avg. | 50.09 | 74.03 | 60.59 | 61.57 | 14.85 | 24.55 |
标准差 SD | 17.26 | 16.10 | 10.90 | 10.65 | ||
变异系数CV (%) | 34.45 | 21.75 | 17.99 | 17.30 |
表4
不同地点下无性系氮素利用效率的差异①"
无性系 Clone | 牡丹区 Mudanqu | 永城 Yongcheng | 曹县 Caoxian | 均值 Avg. | 标准差 SD | 变异系数 CV (%) |
8401 | 134.6±6.74abcd | 163.03±6.61ab | 175.90±6.85a | 157.84 | 21.13 | 13.39 |
8402 | 120.14±4.02bcd | 148.76±3.51b | 152.33±3.74abc | 140.41 | 17.65 | 12.57 |
6-7 | 140.31±5.74abc | 156.07±4.52ab | 164.41±4.65abc | 153.60 | 12.24 | 7.97 |
8-11 | 122.68±4.04bcd | 155.85±3.29ab | 165.99±3.69abc | 148.17 | 22.65 | 15.29 |
008-1 | 118.92±4.11cd | 148.24±4.64b | 164.8±6.14abc | 143.99 | 23.23 | 16.13 |
1-1 | 141.89±5.48ab | 150.78±6.71ab | 157.74±3.25abc | 150.14 | 7.95 | 5.29 |
1-3 | 135.26±4.55abc | 174.33±6.81a | 146.37±3.7bc | 151.99 | 20.13 | 13.24 |
2-6 | 138.78±5.43abc | 168.02±6.83ab | 156.56±5.22abc | 154.45 | 14.74 | 9.54 |
2-7 | 124.63±7.45bcd | 150.96±6.6ab | 149.12±5.65bc | 141.57 | 14.70 | 10.39 |
2-8 | 142.2±0.68ab | 156.10±3.94ab | 169.97±3.68ab | 154.76 | 14.08 | 9.10 |
19-01 | 116.17±3.71d | 144.33±2.47b | 144.58±1.12c | 135.03 | 16.33 | 12.09 |
19-27 | 118.17±16.94cd | 148.21±4.54b | 160.38±5.23abc | 142.25 | 21.72 | 15.27 |
20-01 | 148.64±6.08a | 152.76±3.28ab | 164.34±9.31abc | 155.25 | 8.14 | 5.24 |
均值 Avg. | 130.95 | 154.88 | 159.42 | 148.42 | 16.51 | 11.19 |
标准差 SD | 11.15 | 8.67 | 9.41 | 7.09 | ||
变异系数CV (%) | 8.51 | 5.60 | 5.90 | 4.78 |
表6
线性混合模型随机效应分析①"
效应变量 Effect variable | 生物量 Biomass | 氮素利用效率 Nitrogen utilization efficiency | |||||
方差分量 Variance componment | 标准误 Standard error | z值 z ratio | 方差分量 Variance componment | 标准误 Standard error | z值 z ratio | ||
无性系 Clone | 56.817 1 | 47.983 2 | 1.184 1* | 21.361 5 | 19.918 1 | 1.072 5* | |
地点×无性系 Site×Clone | 136.266 4 | 47.370 8 | 2.876 6* | 41.339 3 | 21.252 6 | 1.945 1* | |
牡丹区 Mudanqu | 113.319 0 | 22.306 6 | 5.080 1** | 232.384 8 | 44.773 1 | 5.190 3** | |
永城 Yongchen | 238.230 2 | 46.642 9 | 5.107 5** | 131.940 9 | 25.648 4 | 5.144 2** | |
曹县 Caoxian | 69.402 9 | 13.558 2 | 5.118 9** | 134.092 9 | 26.164 5 | 5.125 0** |
陈文义, 王智勇, 周梦岩, 等. 幼龄楸树生物量分配规律与异速生长模型. 植物生态学报, 2025, 49 (2): 356- 366. | |
Chen W Y, Wang Z Y, Zhou M Y, et al. Biomass allocation and allometric growth model of young Catalpa bungei. Chinese Journal of Plant Ecology, 2025, 49 (2): 356- 366. | |
程 玲, 张心菲, 张鑫鑫, 等. 基于 BLUP 和 GGE 双标图的林木多地点试验分析. 西北农林科技大学学报(自然科学版), 2018, 46 (3): 87- 93. | |
Cheng L, Zhang X F, Zhang X X, et al. Forestry multi-environment trial analysis based on BLUP and GGE biplot. Journal of Northwest A&F University (Natural Science Edition), 2018, 46 (3): 87- 93. | |
关追追, 卢奇锋, 陈 动, 等. 施肥方式对幼龄楸树非结构性碳器官分配和生长季动态的影响. 西北植物学报, 2022, 42 (8): 1355- 1362.
doi: 10.7606/j.issn.1000-4025.2022.08.1355 |
|
Guan Z Z, Lu Q F, Chen D, et al. Effects of fertilization regimes on the organ allocation and growth-season dynamics of non-structural carbon in the young Catalpa bungei. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42 (8): 1355- 1362.
doi: 10.7606/j.issn.1000-4025.2022.08.1355 |
|
郭文霞, 赵志江, 郑 娇, 等. 2017. 土壤水分和氮素的交互作用对油松幼苗光合和生长的影响. 林业科学, 53(4): 37–48. | |
Guo W X, Zhao Z J, Zheng J, et al. Interaction of soil water and nitrogen on the photosynthesis and growth in Pinus tabulaeformis seedlings. Scientia Silvae Sinicae, 53(4): 37–48. [in Chinese] | |
韩东花, 杨桂娟, 肖 遥, 等. 楸树无性系早期生长变异和优选. 林业科学研究, 2019, 32 (4): 96- 104. | |
Han D H, Yang G J, X Y, et al. Early growth variation and selection of clones of Catalpa bungei. Forest Research, 2019, 32 (4): 96- 104. | |
康利允, 李晓慧, 高宁宁, 等. 氮高效甜瓜种质资源的筛选与评价. 西南农业学报, 2023, 36 (6): 1271- 1278. | |
Kang L Y, Li X H, Gao N N, et al. Screening and evaluation of muskmelon germplasm resources with high nitrogen efficency. Southwest China Journal of Agricultural Sciences, 2023, 36 (6): 1271- 1278. | |
李金花. 基于BLUP和GGE双标图的黑杨派无性系生长性状基因型与环境互作效应. 林业科学, 2021, 57 (6): 64- 73.
doi: 10.11707/j.1001-7488.20210607 |
|
LI J H. Genotype by environment interaction for growth traits of clones of Populus section Aigeiros based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2021, 57 (6): 64- 73.
doi: 10.11707/j.1001-7488.20210607 |
|
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
刘 宁, 丁昌俊, 李 波, 等. 12 个欧美杨无性系生长初期基 因型与环境的互作效应. 林业科学, 2020, 56 (8): 63- 72.
doi: 10.11707/j.1001-7488.20200808 |
|
Liu N, Ding C J, Li B, et al. Effects of genotype by environment interaction of 12 Populus × euramericana clones in their early growth. Scientia Silvae Sinicae, 2020, 56 (8): 63- 72.
doi: 10.11707/j.1001-7488.20200808 |
|
刘奇峰, 李卓蓉, 吴江婷, 等. 不同氮素供给水平对84K杨幼苗碳氮代谢的影响. 林业科学研究, 2019, 32 (6): 63- 72. | |
Liu Q F, Li Z R, Wu J Q, et al. The effect of different nitrogen supply levels on carbon and nitrogen metabolism in 84K poplar (Populus alba × P. glandulosa). Forest Research, 2019, 32 (6): 63- 72. | |
麻文俊, 王军辉, 张守攻, 等. 楸树无性系苗期氮素分配和氮素效率差异. 植物营养与肥料学报, 2011, 17 (5): 1256- 1261.
doi: 10.11674/zwyf.2011.0485 |
|
Ma W J, Wang J H, Zhang S G, et al. Nitrogen distribution and efficiency difference of Catalpa bungei C. A. Mey. clones at nursery stage. Journal of Plant Nutrition and Fertilizers, 2011, 17 (5): 1256- 1261.
doi: 10.11674/zwyf.2011.0485 |
|
麻文俊, 张守攻, 王军辉, 等. 楸树无性系苗期N素利用差异和高生产力无性系选择. 林业科学, 2012, 48 (10): 157- 162.
doi: 10.11707/j.1001-7488.20121025 |
|
Ma W J, Zhang S G, Wang J H, et al. Variation of nitrogen utilization among Catalpa bungei clones at nursery stage and high-yield clones selection. Scientia Silvae Sinicae, 2012, 48 (10): 157- 162.
doi: 10.11707/j.1001-7488.20121025 |
|
宋佳蓉, 刘梦溪, 葛春峰, 等. 不同蓝莓品种幼苗氮素利用效率和适宜施氮水平分析. 植物资源与环境学报, 2024, 33 (3): 58- 68.
doi: 10.3969/j.issn.1674-7895.2024.03.06 |
|
Song J R, Liu M X, Ge C F, et al. Analysis on nitrogen use efficiency and appropriate nitrogen application level for seeding of different blueberry cultivars. Journal of Plant Resources and Evironment, 2024, 33 (3): 58- 68.
doi: 10.3969/j.issn.1674-7895.2024.03.06 |
|
宋勤飞, 尹 杰, 李 芳, 等. 2022. 不同贵州古茶树无性系幼苗氮效率差异分析与评价. 分子植物育种, 1–13. https://kns.cnki.net/kcms/detail/46.1068.S.20220323.2101.004.html. | |
Song Q F, Yin J, Li F, et al. 2022. Analysis and evaluation of nitrogen efficiency difference in clonal seedlings of different Guizhou ancient tea tree. Molecular Plant Breeding, 1–13. [in Chinese] https://kns.cnki.net/kcms/detail/46.1068.S.20220323.2101.004.html | |
唐 洁, 李永进, 黎 蕾, 等. 湘北平原区杨树优良无性系选育及立地适应性评价. 东北林业大学学报, 2023, 51 (12): 9- 14,43.
doi: 10.3969/j.issn.1000-5382.2023.12.002 |
|
Tang J, Li Y J, Li L, et al. Selection of superior clones and evaluation of site adaptability of poplar in northern human plain. Journal of Northeast Forestry University, 2023, 51 (12): 9- 14,43.
doi: 10.3969/j.issn.1000-5382.2023.12.002 |
|
王楚彪, 罗建中, 何文亮, 等. 桉树无性系多区域联合测试的G×E分析及选优. 林业科学, 2022, 58 (11): 108- 117.
doi: 10.11707/j.1001-7488.20221110 |
|
Wang C B, Luo J Z, He W L, et al. G×E analysis and selection of Eucalyptus clones by multi-region combined test. Scientia Silvae Sinicae, 2022, 58 (11): 108- 117.
doi: 10.11707/j.1001-7488.20221110 |
|
王 芳, 蒋路平, 张秦徽, 等. 不同地点51个长白落叶松无性系苗期生长变异和遗传稳定性分析. 植物研究, 2021, 41 (3): 336- 343.
doi: 10.7525/j.issn.1673-5102.2021.03.003 |
|
Wang F, Jiang L P, Zhang Q H, et al. Stability analysis and genetic variation in seedling growth of 51 Larix olgensis clones from different sites. Bulletin of Botanical Research, 2021, 41 (3): 336- 343.
doi: 10.7525/j.issn.1673-5102.2021.03.003 |
|
王力朋, 李吉跃, 王军辉, 等. 2012. 指数施肥对楸树无性系幼苗生长和氮素吸收利用效率的影响. 北京林业大学学报, 34(6): 55–62. | |
Wang L P, Li J Y, Wang J H, et al. 2012. Effects of exponential fertilization on seedling growth and nitrogen uptake and utilization efficiency of Catalpa bungei clones. Journal of Beijing Forestry University, 34(6): 55–62. [in Chinese] | |
王 祥, 白晶晶, 何 茜, 等. 氮磷钾配方施肥对楸树苗期生长及养分利用的影响. 林业与环境科学, 2021, 37 (3): 40- 46.
doi: 10.3969/j.issn.1006-4427.2021.03.007 |
|
Wang X, Bai J J, He X, et al. Effects of different formulated fertilization on the growth and physiological characteristics of Catalpa bungei seedling. Forestry and Environmental Science, 2021, 37 (3): 40- 46.
doi: 10.3969/j.issn.1006-4427.2021.03.007 |
|
薛惠芬. 2023. 楸树无性系氮效率评价及其差异的生理机制研究. 哈尔滨: 东北林业大学. | |
Xue H F. 2023. Researches on nitrogen efficiency evaluationin Catalpa and its physiological mechanism. Harbin: Northeast Forestry University. [in Chinese] | |
严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36 (11): 1805- 1819. | |
Yan W K. Optimal utilization of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36 (11): 1805- 1819. | |
赵曦阳, 李 颖, 赵 丽, 等. 2013. 不同地点白杨杂种无性系生长和适应性表现分析和评价. 北京林业大学学报, 35(6): 7–14. | |
Zhao X Y, Li Y, Zhao L, et al. Analysis and evaluation of growth and performance of white poplar hybrid clones in different sites. Journal of Beijing Forestry University, 35(6): 7–14. [in Chinese] | |
郑聪慧, 张鸿景, 王玉忠, 等. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析. 林业科学, 2019, 55 (8): 73- 83.
doi: 10.11707/j.1001-7488.20190809 |
|
Zheng C H, Zhang H J, Wang Y Z, et al. An analysis of a regional trial of Larix principis-rupprechtii families based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2019, 55 (8): 73- 83.
doi: 10.11707/j.1001-7488.20190809 |
|
邹 群, 吴晨婷, 王 凌, 等. 2023. 楸树资源及其化学成分研究进展. 生物资源, 45(3): 227–235. | |
Zou Q, Wu C T, Wang L, et al. 2020. Research progress on resources and chemical constituents of Catalpa bungei. Biotic Resources, 45(3): 227–235. [in Chinese] | |
André J L, Oliveira R D S, Sette C R, et al. Wood volume of Eucalyptus clones established under different spacings in the Brazilian Cerrado. Forest Science, 2021, 67 (4): 478- 489.
doi: 10.1093/forsci/fxab016 |
|
Cullis B R, Jefferson P, Thompson R, et al. Factor analytic and reduced animal models for the investigation of additive genotype-by-environment interaction in outcrossing plant species with application to a Pinus radiata breeding programme. Theoretical and Applied Genetics, 2014, 127 (10): 2193- 2210.
doi: 10.1007/s00122-014-2373-0 |
|
Ding M, Tier B, Yan W, et al. Application of GGE biplot analysis to evaluate Genotype (G), Environment (E) and G×E interaction on Pinus radiata: a case study. New Zealand Journal of Forestry Science, 2008, 38 (1): 132- 142. | |
Euring D, Ayegbeni S, Jansen M, et al. Growth performance and nitrogen utilization efficiency of two Populus hybrid clones (P. nigra × P. maximowiczii and P. trichocarpa × P. maximowiczii) in relation to soil depth in a young plantation. IForest-Biogeosciences Forestry, 2016, 9 (6): 847- 854.
doi: 10.3832/ifor2016-009 |
|
Guan Z Z, Lu Q F, Lin Y B, et al. Spatial variations and pools of non-structural carbohydrates in young Catalpa bungei undergoing different fertilization regimes. Frontiers in Plant Science, 2022, 13, 1010178.
doi: 10.3389/fpls.2022.1010178 |
|
Jian S Q, Zhu T S, Wang J Y, et al. The current and future potential geographical distribution and evolution process of Catalpa bungei in China. Forests, 2022, 13 (3): 96. | |
Li Y J, Suontama M, Burdon RD, et al. Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics & Genomes, 2017, 3 (13): 60. | |
Luo J, Li H, Liu T X, et al. 2013. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. Journal of Experimental Botany. 64(14): 4207–4224. | |
Luo Z B, Luo J. Uncovering the physiological mechanisms that allow nitrogen availability to affect drought acclimation in Catalpa bungei. Tree Physiology, 2017, 37 (11): 1453- 1456.
doi: 10.1093/treephys/tpx115 |
|
Nelson N D, Berguson W E, McMahon B G, et al. Growth performance and stability of hybrid poplar clones in simultaneous tests on six sites. Biomass Bioenergy, 2018, 118, 115- 125.
doi: 10.1016/j.biombioe.2018.08.007 |
|
Pei X N, Jiang L P, Ahmed A K M, et al. Growth variations and stability analyses of seven poplar clones at three sites in northeast China. Journal of Forestry Research, 2021, 32 (4): 1673- 1680.
doi: 10.1007/s11676-020-01210-x |
|
Santos O P D, Carvalho I R, Nardino M, et al. Methods of adaptability and stability applied to Eucalyptus breeding. Pesquisa Agropecuaria Brasileira, 2018, 53 (1): 53- 62.
doi: 10.1590/s0100-204x2018000100006 |
|
Shi H L, Ma W J, Song J Y, et al. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiology, 2017, 37 (11): 1457- 1468.
doi: 10.1093/treephys/tpx090 |
|
Sun T T, Ren R H, Xing M M, et al. Morphological and physiological plasticity of Catalpa bungei roots under partial root-zone drought as affected by nitrogen forms. New Forests, 2024, 55 (3): 383- 402.
doi: 10.1007/s11056-023-09983-9 |
|
Ukalski K, Klisz M. Application of GGE biplot graphs in multi-environment trials on selection of forest trees. Folia Forestalia Polonica, 2016, 58 (4): 228- 239.
doi: 10.1515/ffp-2016-0026 |
|
Wang J C, Qin X M, Xu S Q, et al. Nitrogen availability affects stem development and response to differential root-zone drought stress in Catalpa bungei. Environmental and Experimental Botany, 2021, 186, 104429.
doi: 10.1016/j.envexpbot.2021.104429 |
|
Xiao Y, Ma W J, Lu N, et al. Genetic variation of growth traits and genotype-by-environment interactions in clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests, 2019, 10 (1): 57.
doi: 10.3390/f10010057 |
|
Xu T, Wang Z Y, Wang Z Y, et al. Effects of nitrate- and ammonium- nitrogen on anatomical and physiological responses of Catalpa bungei under full and partial root-zone drought. BMC Plant Biology, 2024, 24 (1): 217.
doi: 10.1186/s12870-024-04874-3 |
|
Yan W K, Cornelius P L, Crossa J, et al. Two types of GGE biplots for analyzing multi-environment trial data. Crop Science, 2001, 41 (3): 656- 663.
doi: 10.2135/cropsci2001.413656x |
[1] | 张宇娇,赵恒谦,付含聪,刘哿,皇甫霞丹,刘轩绮. 基于无人机遥感多特征的单木地上生物量反演模型[J]. 林业科学, 2025, 61(8): 129-141. |
[2] | 熊晓燕,李彩霞,柴国奇,陈龙,贾翔,雷令婷,张晓丽. 联合UAV-LiDAR和GEDI数据的区域森林地上生物量估算[J]. 林业科学, 2025, 61(8): 142-153. |
[3] | 吴家敏,王亚欣,孙斌,马志杰,孙维娜,洪亮. 基于无人机的柠条锦鸡儿生物量遥感估测[J]. 林业科学, 2025, 61(6): 13-24. |
[4] | 费越,王军辉,卢楠,张苗苗. 一种基于PDS同源基因的楸树瞬时基因沉默技术体系的建立[J]. 林业科学, 2025, 61(6): 49-60. |
[5] | 赵珊,董静,郑帅,陈发菊,刘文,梁宏伟. 长期继代培养的楸树胚性愈伤组织难以分化的成因[J]. 林业科学, 2025, 61(6): 130-138. |
[6] | 杨菲菲,张王菲,赵磊,赵含,姬永杰,王梦金. 基于GF-1数据的二阶段遥感特征优选与森林地上生物量反演模型[J]. 林业科学, 2025, 61(4): 9-19. |
[7] | 刘霞,凌成星,陈永富,刘华,贺振平,李泽江,孙维娜,马志杰,由海霞,吕文,赵峰,曾浩威,王鑫淼. 鄂尔多斯地区13种典型灌木的可加性生物量模型及含碳率[J]. 林业科学, 2025, 61(4): 117-128. |
[8] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
[9] | 刘元玺,王丽娜,吴俊文,李世民. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 2024, 60(6): 71-85. |
[10] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[11] | 刘兴巧,马晓蕾,马慧丽,张楠楠,魏硕,宋程威,杨迪,侯小改. 氮肥喷施时间对‘凤丹’牡丹小枝生物量分配及养分利用的影响[J]. 林业科学, 2024, 60(12): 47-57. |
[12] | 杨涛, 邱勇斌, 沈汉, 郑成忠, 张振, 王文月, 金国庆, 周志春. 柏木无性系和家系含碳量的早期评价与优良品系选择[J]. 林业科学, 2023, 59(9): 85-94. |
[13] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[14] | 王烨,李广德,刘国彬,廖婷,郭丽琴,姚砚武,曹均. 毛白杨人工林物候特征和生长对施肥的可塑性响应[J]. 林业科学, 2023, 59(5): 32-40. |
[15] | 郭泽鑫,胡中岳,曹聪,刘萍. 广东主要森林类型林分生物量和碳储量模型研建[J]. 林业科学, 2023, 59(12): 37-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||