欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (8): 142-153.doi: 10.11707/j.1001-7488.LYKX20240818

• 研究论文 • 上一篇    下一篇

联合UAV-LiDAR和GEDI数据的区域森林地上生物量估算

熊晓燕1,2,3,李彩霞1,2,3,*(),柴国奇4,陈龙4,贾翔5,雷令婷1,2,3,张晓丽1,2,3,*()   

  1. 1. 北京林业大学 林木资源高效生产全国重点实验室 北京 100083
    2. 北京林业大学林学院  精准林业北京市重点实验室 北京 100083
    3. 北京林业大学 森林培育与保护教育部重点实验室 北京 100083
    4. 中国林业科学研究院资源信息研究所 北京 100091
    5. 河南省科学院地理研究所 郑州 450052
  • 收稿日期:2024-12-31 出版日期:2025-08-25 发布日期:2025-09-02
  • 通讯作者: 李彩霞,张晓丽 E-mail:licaixia179@163.com;zhang-xl@263.net
  • 基金资助:
    中欧对地观测合作森林监测技术与示范应用(2021YFE0117700-3)。

Estimation of Aboveground Biomass in Regional Forests by Using Integrating UAV-LiDAR and GEDI Data

Xiaoyan Xiong1,2,3,Caixia Li1,2,3,*(),Guoqi Chai4,Long Chen4,Xiang Jia5,Lingting Lei1,2,3,Xiaoli Zhang1,2,3,*()   

  1. 1. Beijing Forestry University State Key Laboratory of Efficient Production of Forest Resources Beijing 100083
    2. College of Forestry, Beijing Forestry University Beijing Key Laboratory of Precision Forestry Beijing 100083
    3. Beijing Forestry University Key Laboratory of Forest Cultivation and Protection, Ministry of Education Beijing 100083
    4. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry Beijing 100091
    5. Institute of Geographical Sciences, Henan Academy of Sciences Zhengzhou 450052
  • Received:2024-12-31 Online:2025-08-25 Published:2025-09-02
  • Contact: Caixia Li,Xiaoli Zhang E-mail:licaixia179@163.com;zhang-xl@263.net

摘要:

目的: 结合无人机激光雷达(UAV-LiDAR)和全球生态系统动态调查(GEDI)数据,构建“样地?局部?区域”估算框架估算高峰林场森林地上生物量(AGB),为森林碳储量监测提供新路径。方法: 以林场内样地实测数据为基础,评估多元线性回归(MLR)、随机森林(RF)和支持向量回归(SVR)3种模型在估算UAV-LiDAR区域AGB中的性能。为扩增区域尺度样本数量,利用GEDI光斑处的UAV-LiDAR区域AGB,结合筛选的GEDI光斑关键特征,构建光斑尺度AGB估算模型,预测林场内的光斑AGB。联合UAV-LiDAR局部AGB与光斑AGB,采用经验贝叶斯克里金(EBK)法实现森林AGB空间插值;对关键光斑特征进行EBK插值,并结合UAV-LiDAR估算的AGB构建模型,实现AGB空间分布反演。结果: 与MLR和SVR模型相比,RF模型在估算UAV-LiDAR区域AGB中表现更优异,R2高达0.95,RMSE为9.96 Mg?hm?2,rRMSE为9.79%。利用RF估算的光斑AGB与UAV-LiDAR区域AGB的拟合较好,R2为0.93,RMSE为5.93 Mg?hm?2,rRMSE为5.84%。采用UAV-LiDAR局部AGB和光斑AGB协同插值的预测精度R2为0.78,RMSE为22.30 Mg?hm?2,MAE为16.99 Mg?hm?2。与基于插值关键特征(fhd、rh96、cover、pt4和pai)的AGB反演结果相比,获得的研究区AGB空间范围更合理(49.26~193.27 Mg?hm?2)。结论: 以“样地?局部?区域”AGB估算框架为基础,并采用随机森林算法和空间插值法,有效结合UAV-LiDAR和GEDI数据,克服了实测样地数量有限和遥感数据空间不连续的问题,验证了光斑样本在森林区域AGB估算中的可行性,实现了高峰林场AGB估算,为森林碳储量评估和可持续管理提供了数据支撑。

关键词: 无人机激光雷达, 全球生态系统动态调查, 随机森林, 森林地上生物量, 经验贝叶斯克里金法

Abstract:

Objective: By integrating unmanned aerial vehicle light detection and ranging (UAV-LiDAR) data and global ecosystem dynamics investigation (GEDI) data, a“plot-local-region”estimation framework was constructed to estimate the aboveground biomass (AGB) of Gaofeng Forest Farm, providing a new approach for forest carbon storage monitoring. Method: Based on plot-level field measured data within the forest farm, this study evaluated the performance of three models: multiple linear regression (MLR), random forest (RF), and support vector regression (SVR), in estimating UAV-LiDAR-derived regional aboveground biomass (AGB). To augment the sample size at the regional scale, UAV-LiDAR-derived AGB estimated at GEDI footprint locations was combined with selected key GEDI footprint metrics to develop a footprint-level AGB estimation model. This model was subsequently employed to predict footprint-level AGB across the entire forest farm. The spatial interpolation of forest AGB was achieved by integrating UAV-LiDAR-derived local AGB with footprint-level AGB using empirical Bayesian Kriging (EBK) method. The inversion of AGB spatial distribution was implemented through EBK interpolation of key footprint metrics combined with UAV-LiDAR estimated AGB for model construction. Result: RF model demonstrated superior performance in estimating UAV-LiDAR-derived regional AGB compared to both MLR and SVR, achieving an R2 of 0.95 with RMSE = 9.96 Mg·hm?2 and rRMSE = 9.79%. The footprint-level AGB estimated by RF showed strong agreement with UAV-LiDAR regional AGB (R2 = 0.93, RMSE = 5.93 Mg·hm?2, rRMSE = 5.84%). The synergistic interpolation of UAV-LiDAR local AGB and GEDI footprint AGB achieved a prediction accuracy of R2 = 0.78, RMSE = 22.30 Mg·hm?2, and MAE = 16.99 Mg·hm?2 Compared with the AGB inversion results based on interpolated key features (fhd, rh96, cover, pt4 and pai), the AGB ranges in the study area obtained were more reasonable (49.26–193.27 Mg·hm?2). Conclusion: This study is based on the“plot-local-region”AGB estimation framework, employing random forest algorithms and spatial interpolation methods to effectively integrate UAV-LiDAR and GEDI data. It overcomes the limitations of scarce field plot measurements and the spatial discontinuity of remote sensing data, and verifies the feasibility of using footprint samples for forest AGB estimation. The research achieves accurate AGB estimation in Gaofeng Forest Farm, providing essential data support for forest carbon storage assessment and sustainable management.

Key words: unmanned aerial vehicle light detection and ranging (UAV-LiDAR), global ecosystem dynamics investigation (GEDI), random forest, forest aboveground biomass, empirical Bayesian Kriging

中图分类号: