巢清尘, 李柔珂, 崔 童, 等. 2023. 中国气候变化科学认识进展及未来展望:中国《第四次气候变化国家评估报告·第一部分》解读. 中国人口·资源与环境, 33(1): 74–79. Chao Q C, Li R K, Cui T, et al. 2023. Scientific progress and future prospects in climate change: an interpretation of Part 1 of China’s Fourth National Assessment Report on Climate Change. China Population, Resources and Environment, 33(1): 74–79. [in Chinese] 高宗渊. 2023. 水分胁迫对刺槐生理特性的影响. 特种经济动植物, 26(6): 70-72. Gao Z Y. 2023. Effects of water stress on physiological characteristics of Robinia pseudoacacia. Special Economic Animals and Plants, 26(6): 70-72. [in Chinese] 汲玉河, 周广胜, 李宗善. 2023. 气候变化驱动下黄土高原刺槐林气候适宜性和脆弱性. 生态学报, 43(8): 3348-3358. Ji Y H, Zhou G S, Li Z S. 2023. Climate suitability and vulnerability of Robinia pseudoacacia forest driven by climate change on the Loess Plateau. Acta Ecologica Sinica, 43(8): 3348-3358. [in Chinese] 兰雪涵, 王金玲, 付 聪, 等. 2022. 基于优化MaxEnt模型的天女木兰在中国适生区预测. 西北林学院学报, 37(4): 100-106. Lan X H, Wang J L, Fu C, et al. 2022. Prediction of suitable distribution area of Magnolia sieboldii in China based on the optimized MaxEnt model. Journal of Northwest Forestry University, 37(4): 100-106. [in Chinese] 李平平, 王彦辉, 段文标, 等. 2023. 黄土高原刺槐人工林立地指数变化及评价. 林业科学, 59(4): 18-31. Li P P, Wang Y H, Duan W B, et al. 2023. Variation and evaluation of site index of black locust plantations on the Loess Plateau of northwest China. Scientia Silvae Sinicae, 59(4): 18-31. [in Chinese] 刘 阳, 苗 晨, 王鹤松. 2023. 气候变化对落叶松人工林在中国适生区分布的影响. 生态学报, 43(23): 9686-9698. Liu Y, Miao C, Wang H S. 2023. Influence of climate change on distribution of suitable areas of Larix plantation in China. Acta Ecologica Sinica, 43(23): 9686-9698. [in Chinese] 刘亚玲, 信忠保, 李宗善, 等. 2023. 黄土丘陵区小流域不同海拔刺槐径向生长对气候的响应差异. 生态学报, 43(24): 10119-10130. Liu Y L, Xin Z B, Li Z S, et al. 2023. Growth characteristics and biomass of artificial Robinia pseudoacacia in the Loess Hilly and Gully areas. Acta Ecologica Sinica, 43(24): 10119-10130. [in Chinese] 荣文文, 黄 祥, 牛攀新, 等. 2023. 基于最大熵模型的中药材木贼麻黄潜在适生区. 生态学报, 43(20): 8631-8646. Rong W W, Huang X, Niu P X, et al. 2023. Potentially suitable areas for traditional Chinese medicinal material Ephedra equisetina based on MaxEnt model. Acta Ecologica Sinica, 43(20): 8631-8646. [in Chinese] 万辛如, 程超源, 白德凤, 等. 2023. 气候变化的生态影响及适应对策. 中国科学院院刊, 38(3): 518-527. Wan X R, Cheng C Y, Bai D F, et al. 2023. Ecological impacts of climate change and adaption strategies. Bulletin of Chinese Academy of Sciences, 38(3): 518-527. [in Chinese] 王 蕾, 张百超, 石 英, 等. 2022. IPCC AR6报告关于气候变化影响和风险主要结论的解读. 气候变化研究进展, 18(4): 389-394. Wang L, Zhang B C, Shi Y, et al. 2022. Interpretation of the IPCC AR6 on the impacts and risks of climate change. Climate Change Research, 18(4): 389-394. [in Chinese] 王晓帆, 段雨萱, 金露露, 等. 2023. 基于优化的最大熵模型预测中国高山栎组植物的历史、现状与未来分布变化. 生态学报, 43(16): 6590-6604. Wang X F, Duan Y X, Jin L L, et al. 2023. Prediction of historical, present and future distribution of Quercussect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecologica Sinica, 43(16): 6590-6604. [in Chinese] 向竣文, 张利平, 邓 瑶, 等. 2021. 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估. 武汉大学学报(工学版), 54(1): 46-57, 81. Xiang J W, Zhang L P, Deng Y, et al. 2021. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 54(1): 46-57, 81. [in Chinese] 张彦静, 斯 琴, 胡 洁, 等. 2023. 气候变化情景下裸冠菊在中国的潜在适生区分布预测. 生态学报, 43(21): 8852-8864. Zhang Y J, Si Q, Hu J, et al. 2023. Prediction of the potential geographical distribution of the invasive plant Gymnocoronis spilanthoides in China under climate change. Acta Ecologica Sinica, 43(21): 8852-8864. [in Chinese] 赵蓬晖, 张江涛, 王 念. 2017. 刺槐原产地分布及世界各国引种与研究概况. 河南林业科技, 37(1): 30-32. Zhao P H, Zhang J T, Wang N. 2017. The original distribution introduction and development of Robinia pserdoacacia. Journal of Henan Forestry Science and Technology, 37(1): 30-32. [in Chinese] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述. 气候变化研究进展, 15(5): 445-456. Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model intercomparison project phase 6 (CMIP6). Climate Change Research, 15(5): 445-456. [in Chinese] 朱耿平, 乔慧捷. 2016. Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24(10): 1189-1196. Zhu G P, Qiao H J. 2016. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 24(10): 1189-1196. [in Chinese] Anderegg W R L, Trugman A T, Badgley G, et al. 2020. Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 10(12): 1091-1095. Anderson R P, Raza A. 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37(7): 1378-1393. Anibaba Q A, Dyderski M K, Jagodziński A M. 2022. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Science of the Total Environment, 825: 154053. Bjorkman A D, Myers-Smith I H, Elmendorf S C, et al. 2018. Plant functional trait change across a warming tundra biome. Nature, 562(7725): 57-62. Bradley B A. 2009. Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology, 15(1): 196-208. Buckman-Sewald J, Whorton C R, Root K V. 2014. Developing macrohabitat models for bats in parks using maxent and testing them with data collected by citizen scientists. International Journal of Biodiversity and Conservation, 6(2): 171-183. Cao Y W, Hwarari D, Radani Y, et al. 2023. Molecular Mechanism Underlying Plant Response to Cold Stress. Phyton-International Journal of Experimental Botany, 92(9): 2665-2683. Chen W D, Wei J, Zhu K, et al. 2022. Predicting potential distribution of Emmenopterys henryi in Southwest China based on the Maxent model and influencing factors. Tropical Ecology, 63(4): 572-583. Cobos M E, Peterson A T, Barve N, et al. 2019. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7: e6281. Cui Y H, Bi H X, Liu S Q, et al. 2020. Developing additive systems of biomass equations for Robinia pseudoacacia L. in the region of Loess Plateau of western Shanxi Province, China. Forests, 11(12): 1332. Dormann C F, Elith J, Bacher S, et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1): 27-46. Dyderski M K, Paź S, Frelich L E, et al. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3): 1150–1163. Elith J, Leathwick J R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677–697. Fourcade Y, Engler J O, Rödder D, et al. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, 9(5): e97122. Gan J Y, He G, Yu Y L, et al. 2022. Maxent model predictions of climate change impacts on the suitable distribution of crayfish aquaculture in China. Indian Journal of Animal Research, 56(10): 1295-1300. Grossiord C, Bachofen C, Gisler J, et al. 2022. Warming may extend tree growing seasons and compensate for reduced carbon uptake during dry periods. Journal of Ecology, 110(7): 1575-1589. Guisan A, Zimmermann N E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2/3): 147-186. Hulme M, Zhao Z C, Jiang T. 1994. Recent and future climate change in east Asia. International Journal of Climatology, 14(6): 637-658. Kafaei S, Karami P, Mehdizadeh R, et al. 2021. Relationship between niche breadth and range shifts of Rhinopoma muscatellum (Chiroptera: Rhinopomatidae) in climate change scenarios in arid and semiarid mountainous region of Iran. Journal of Mountain Science, 18(9): 2357-2376. Khadka D, Babel M S, Abatan A A, et al. 2022. An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology, 42(2): 1181-1202. Li G Q, Xu G H, Guo K, et al. 2014. Mapping the global potential geographical distribution of black locust (Robinia pseudoacacia L. ) using herbarium data and a maximum entropy model. Forests, 5(11): 2773-2792. Li K J, Liu X F, Zhang J H, et al. 2023. Complexity responses of Rhododendron species to climate change in China reveal their urgent need for protection. Forest Ecosystems, 10: 100124. Little E L Jr. 1978. Atlas of United States trees. volume 5, Florida. Washington, D. C: U. S. Department of Agriculture, Forest Service. Liu J M, Xu Y Y, Sun C W, et al. 2022. Distinct ecological habits and habitat responses to future climate change in three east and southeast Asian Sapindus species. Forest Ecology and Management, 507: 119982. Liu M X, Yang C L, Mu R L. 2023. Effect of soil water–phosphorus coupling on the photosynthetic capacity of Robinia pseudoacacia L. seedlings in semi-arid areas of the Loess Plateau, China. Environmental Monitoring and Assessment, 195(8): 932. Martínez-Minaya J, Cameletti M, Conesa D, et al. 2018. Species distribution modeling: a statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 32(11): 3227-3244. Meng H, Wei X, Franklin S B, et al. 2017. Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China. Plant Biology, 19(4): 552-561. Meynard C N, Quinn J F. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography, 34(8): 1455-1469. Morales N S, Fernández I C, Baca-González V. 2017. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 5: e3093. Nicolescu V N, Rédei K, Mason W L, et al. 2020. Ecology, growth and management of black locust (Robinia pseudoacacia L. ), a non-native species integrated into European forests. Journal of Forestry Research, 31(4): 1081-1101. Norberto M, Sillero N, Coimbra J, et al. 2023. Filling the maize yield gap based on precision agriculture–A MaxEnt approach. Computers and Electronics in Agriculture, 211: 107970. Pan S, Peng D L, Li Y M, et al. 2023. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. Journal of Integrative Agriculture, 22(7): 2138-2150. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637–669. Peng S S, Piao S L, Ciais P, et al. 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501(7465): 88-92. Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3/4): 231-259. Popp A, Calvin K, Fujimori S, et al. 2017. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42: 331-345. Puchałka R, Dyderski M K, Vítková M, et al. 2021. Black locust (Robinia pseudoacacia L. ) range contraction and expansion in Europe under changing climate. Global Change Biology, 27(8): 1587-1600. Quintero I, Wiens J J. 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16(8): 1095-1103. Quiroga M P, Souto C P. 2022. Ecological niche modeling, niche overlap, and good old Rabinowitz’s rarities applied to the conservation of gymnosperms in a global biodiversity hotspot. Landscape Ecology, 37(10): 2571-2588. Ridder N N, Pitman A J, Ukkola A M. 2021. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophysical Research Letters, 48(2): e2020GL091152. Sekercioglu C H, Schneider S H, Fay J P, et al. 2008. Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22(1): 140-150. Shi X D, Wang J W, Zhang L, et al. 2023. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecological Indicators, 148: 110093. Shrestha U B, Sharma K P, Devkota A, et al. 2018. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators, 95: 99-107. Sigdel S R, Wang Y F, Camarero J J, et al. 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24(11): 5549-5559. Su Z X, Su B Q, Mao S L, et al. 2023. Leaf C: N: P stoichiometric homeostasis of a Robinia pseudoacacia plantation on the Loess Plateau. Journal of Forestry Research, 34(4): 929-937. Walkovszky A. 1998. Changes in phenology of the locust tree (Robinia pseudoacacia L. ) in Hungary. International Journal of Biometeorology, 41(4): 155-160. Walther G R, Post E, Convey P, et al. 2002. Ecological responses to recent climate change. Nature, 416(6879): 389-395. Wan G Z, Wang L, Jin L, et al. 2021. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Industrial Crops and Products, 170: 113783. Werenkraut V, Arbetman M P, Fergnani P N. 2022. The oriental hornet (Vespa orientalis L. ): a threat to the americas? Neotropical Entomology, 51(2): 330-338. Xu L L, Meng P, Tong X J, et al. 2022. Productivity and water use efficiency of Pinus tabulaeformis responses to climate change in the temperate monsoon region. Agricultural and Forest Meteorology, 327: 109188. Yang W J, Sun S X, Wang N X, et al. 2023. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. Science of the Total Environment, 903: 166260. Zhang X T, He P, Guo L F, et al. 2023. Potential carbon sequestration and economic value assessment of the relict plant Ginkgo biloba L. based on the maximum entropy model. Forests, 14(8): 1618. Zhao Y, Deng X W, Xiang W H, et al. 2021. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 64: 101393. Zheng T, Sun J Q, Shi X J, et al. 2022. Evaluation of climate factors affecting the quality of red Huajiao (Zanthoxylum bungeanum maxim. ) based on UPLC-MS/MS and MaxEnt model. Food Chemistry: X, 16: 100522. Zheng Y X, Yuan C, Matsushita N, et al. 2023. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecology and Evolution, 13(9): e10565. Zhong X R, Zhang L, Zhang J B, et al. 2023. Maxent modeling for predicting the potential geographical distribution of Castanopsis carlesii under various climate change scenarios in China. Forests, 14(7): 1397.
|