林业科学 ›› 2025, Vol. 61 ›› Issue (4): 117-128.doi: 10.11707/j.1001-7488.LYKX20240311
刘霞1,2,凌成星1,2,*(),陈永富1,2,刘华1,2,贺振平3,李泽江4,孙维娜4,马志杰3,由海霞5,吕文6,赵峰1,2,曾浩威1,2,王鑫淼1,2
收稿日期:
2024-05-28
出版日期:
2025-04-25
发布日期:
2025-04-21
通讯作者:
凌成星
E-mail:lingcx@ifrit.ac.cn
基金资助:
Xia Liu1,2,Chengxing Ling1,2,*(),Yongfu Chen1,2,Hua Liu1,2,Zhenping He3,Zejiang Li4,Weina Sun4,Zhijie Ma3,Haixia You5,Wen Lü6,Feng Zhao1,2,Haowei Zeng1,2,Xinmiao Wang1,2
Received:
2024-05-28
Online:
2025-04-25
Published:
2025-04-21
Contact:
Chengxing Ling
E-mail:lingcx@ifrit.ac.cn
摘要:
目的: 基于冠幅面积和灌木高度变量构建鄂尔多斯地区13种典型灌木的可加性生物量模型,并根据生物量分配系数加权确定整株灌木的综合含碳率,为在区域尺度上精准评估灌木碳储量提供基础支撑。方法: 以内蒙古鄂尔多斯地区13种典型灌木为对象,测定各器官组分生物量和含碳率;利用线性模型、对数模型、幂函数和理论生长方程构建以冠幅面积、灌木高度和植冠体积为自变量的基础灌木生物量模型,从中挑选出各器官组分生物量的最优模型形式,采用分量相加的多元非线性联合估计方法构建可加性生物量模型,通过加权回归消除模型异方差;以各器官组分生物量占比为权重,计算各灌木的综合含碳率。结果: 鄂尔多斯地区13种典型灌木的基础生物量模型均以幂函数效果最好,构建的可加性生物量模型具有较高精度,大多数模型的决定系数(R2)在0.8以上且归一化均方误差(NMSE)接近0.1。在单因素指标中,模型自变量采用冠幅面积时的精度比采用灌木高度时更高,而冠幅面积与灌木高度组成的复合因子植冠体积是大多数灌木生物量模型的最佳自变量。各器官的含碳率具有波动性且变化在28.86%~46.97%,同一器官的含碳率在不同灌木种类之间存在显著差异,13种灌木的器官生物量加权平均含碳率为34.68%~42.37%。结论: 幂函数是预测灌木生物量模型的最佳形式,以冠幅面积和灌木高度的复合因子植冠体积为自变量的可加性生物量模型精度较高且实用性强;不同灌木的各器官及整株植物含碳率均存在差异,估算灌木碳储量时应考虑不同物种的含碳率差异。本研究结果可为干旱半干旱区灌木碳储量和碳汇的精细化遥感监测和评估提供参数与模型支撑。
中图分类号:
刘霞,凌成星,陈永富,刘华,贺振平,李泽江,孙维娜,马志杰,由海霞,吕文,赵峰,曾浩威,王鑫淼. 鄂尔多斯地区13种典型灌木的可加性生物量模型及含碳率[J]. 林业科学, 2025, 61(4): 117-128.
Xia Liu,Chengxing Ling,Yongfu Chen,Hua Liu,Zhenping He,Zejiang Li,Weina Sun,Zhijie Ma,Haixia You,Wen Lü,Feng Zhao,Haowei Zeng,Xinmiao Wang. Additive Biomass Models and Carbon Content of Thirteen Typical Shrubs in Erdos Region[J]. Scientia Silvae Sinicae, 2025, 61(4): 117-128.
表1
14个采样区的基本概况"
样区编号 Plot code | 面积 Area/km2 | 经度 Longitude (E)/(°) | 纬度 Latitude (N)/(°) | 海拔Altitude/m | 覆盖度 Coverage degree | 样区内主要灌木 Main shrubs in the sample plot |
1 | 1 | 109.54 | 39.27 | 1 402 | 0.681 | 柠条、沙柳、沙蒿、杨柴 C. korshinskii,S. psammophila,A. desertorum,C. fruticosum var. mongolicum |
2 | 1 | 108.85 | 39.53 | 1 476 | 0.278 | 沙蒿、柠条A. desertorum,C. korshinskii |
3 | 1 | 108.92 | 39.54 | 1 469 | 0.063 | 柠条C. korshinskii |
4 | 1 | 108.77 | 39.30 | 1 371 | 0.210 | 沙蒿、杨柴、沙柳 A. desertorum,C. fruticosum var. mongolicum,S. psammophila |
5 | 1 | 108.75 | 39.29 | 1 389 | 0.360 | 柠条、沙柳、沙蒿、杨柴C. korshinskii,S. psammophila,A. desertorum, C. fruticosum var. mongolicum |
6 | 1 | 109.02 | 39.78 | 1 502 | 0.154 | 沙柳、沙蒿 S. psammophila,A. desertorum |
7 | 1 | 109.54 | 40.42 | 1 037 | 0.259 | 沙棘、柠条H. rhamnoides,C. korshinskii |
8 | 1 | 106.88 | 40.08 | 1 140 | 0.083 | 四合木、沙冬青、霸王T. mongolica,A. mongolicus,S. xanthoxylon |
9 | 1 | 106.90 | 40.08 | 1 166 | 0.064 | 霸王、沙冬青、白刺、四合木 S. xanthoxylon,A. mongolicus,N. tangutorum,T. mongolica |
10 | 1 | 106.91 | 40.07 | 1 185 | 0.039 | 红砂、四合木、霸王、沙冬青、白刺R. soongarica,T. mongolica, S. xanthoxylon,A. mongolicus,N. tangutorum |
11 | 1 | 106.92 | 40.06 | 1 196 | 0.047 | 红砂、四合木R. soongarica,T. mongolica |
12 | 1 | 107.29 | 40.50 | 1 041 | 0.585 | 沙蒿、柽柳A. desertorum,T. chinensis |
13 | 1 | 107.28 | 40.50 | 1 080 | 0.073 | 梭梭、沙蒿、柠条H. ammodendron,A. desertorum, C. korshinskii |
14 | 1 | 109.30 | 38.98 | 1 313 | 0.712 | 沙地柏S. valgaris |
表2
13种灌木的基本信息①"
物种 Shrub species | 样株数量 Samples number | 灌木高度 Shrub height/m | 冠幅面积 Crown area/m2 | 各组分生物量 Biomass of each component of shrub/g | |||
茎干 Stem | 枝叶 Branch and leaves | 根系 Root | 灌木生物量 Shrub biomass | ||||
霸王 S. xanthoxylon | 69 | 0.39~1.57 | 0.21~6.51 | — | 63~5 214 | 130~12 665 | 214~17 879 |
白刺 N. tangutorum | 50 | 0.2~0.9 | 0.21~58.02 | — | 52~637 | 132~11 281 | 198~16 918 |
柽柳 T. chinensis | 51 | 0.85~3.58 | 0.19~17.87 | 16~10 848 | 46~26 898 | 66~34 704 | 128~67 584 |
红砂 R. songarica | 51 | 0.17~0.68 | 0.20~1.48 | — | 48~831 | 21~721 | 69~1 553 |
沙地柏 S. vulgaris | 42 | 0.38~1.25 | 1.90~3.75 | — | 3 367~15 166 | 635~6 438 | 5 729~19 903 |
沙冬青 A. mongolicus | 63 | 0.28~1.21 | 0.06~6.42 | — | 28~4 288 | 35~2 997 | 102~7 286 |
沙蒿 A. desertorum | 89 | 0.33~1.06 | 0.10~4.15 | — | 13~1 400 | 4~910 | 17~2 310 |
沙棘 H. rhamnoides | 50 | 0.67~2.32 | 0.12~4.15 | 19~1 598 | 79~4 183 | 21~1 209 | 139~6 831 |
沙柳 S. psammophila | 71 | 0.98~3.11 | 0.19~16 | 21~4 109 | 19~16 379 | 26~11 559 | 127~32 048 |
四合木 T. mongolica | 86 | 0.24~0.75 | 0.14~3.43 | — | 108~4 960 | 48~1 674 | 230~6 458 |
梭梭 H. ammodendron | 61 | 0.56~2.85 | 0.18~4.26 | 44~1 103 | 71~2 686 | 45~1 719 | 160~5 255 |
柠条 C. korshinskii | 148 | 0.23~4.35 | 0.05~23.41 | 48~5 362 | 31~8 530 | 22~6 116 | 102~16 632 |
杨柴C. fruticosum var. mongolicum | 38 | 0.52~1.65 | 0.12~4.12 | — | 11~1 031 | 3~206 | 14~1 237 |
表3
灌木生物量方程形式①"
方程编号 Equation code | 方程类型 Equation types | 方程形式 Equations form | 方程编号 Equation code | 方程类型 Equation types | 方程形式 Equations form | |
Eq.3 | 线性函数Linear function | Eq.10 | 幂函数Power function | |||
Eq.4 | 线性函数Linear function | Eq.11 | 幂函数Power function | |||
Eq.5 | 线性函数Linear function | Eq.12 | 幂函数Power function | |||
Eq.6 | 对数函数Logarithmic function | Eq.13 | Schumacher理论生长方程 Schumacher theoretical growth equation | |||
Eq.7 | 对数函数Logarithmic function | Eq.14 | Schumacher理论生长方程 Schumacher theoretical growth equation | |||
Eq.8 | 对数函数Logarithmic function | Eq.15 | Schumacher理论生长方程 Schumacher theoretical growth equation | |||
Eq.9 | 幂函数Power function |
表4
13种灌木各组分的生物量模型及十折交叉验证精度评价结果①"
物种 Shrub species | 组分 Components | 模型形式 Equation form | 系数 Coefficients | 验证精度指标 Validation accuracy indicators | |||||||
a | b | c | AIC | BIC | R2 | RMSE | NMSE | ||||
霸王 S. xanthoxylon | 枝叶Branch and leaf | 865.771 | 0.825 | 0.647 | 843.30 | 851.74 | 0.95 | 231.04 | 0.05 | ||
根系Root | 1 059.800 | 1.221 | 0.369 | 886.38 | 894.83 | 0.98 | 366.33 | 0.02 | |||
整株All parts | — | — | — | — | — | 0.98 | 543.88 | 0.03 | |||
白刺 N. tangutorum | 枝叶Branch and leaf | 250.808 | 0.812 | 0.259 | 576.09 | 583.04 | 0.93 | 326.13 | 0.07 | ||
根系Root | 483.331 | 0.814 | 0.222 | 630.33 | 637.28 | 0.94 | 605.77 | 0.06 | |||
整株All parts | — | — | — | — | — | 0.94 | 927.08 | 0.06 | |||
柽柳 T. chinensis | 茎干 Stem | 89.542 | 0.793 | 1.928 | 708.83 | 715.88 | 0.84 | 809.35 | 0.16 | ||
枝叶Branch and leaf | 516.548 | 0.928 | — | 779.73 | 785.01 | 0.84 | 2 084.71 | 0.19 | |||
根系Root | 388.23 | 0.766 | 1.857 | 776.25 | 783.29 | 0.92 | 2 183.81 | 0.10 | |||
整株All parts | — | — | — | — | — | 0.92 | 4 251.54 | 0.10 | |||
红砂 R. songarica | 枝叶Branch and leaf | 956.821 | 0.940 | 0.862 | 475.19 | 482.24 | 0.90 | 60.18 | 0.11 | ||
根系Root | 195.328 | 1.152 | — | 471.46 | 476.75 | 0.73 | 34.71 | 0.27 | |||
整株All parts | — | — | — | — | — | 0.88 | 87.19 | 0.13 | |||
沙地柏 S. vulgaris | 枝叶Branch and leaf | 2 843.858 | 1.207 | 0.718 | 611.06 | 617.40 | 0.69 | 1 343.74 | 0.32 | ||
根系Root | 2 331.357 | 0.643 | — | 560.61 | 565.36 | 0.44 | 668.35 | 0.58 | |||
整株All parts | — | — | — | — | — | 0.70 | 1 693.73 | 0.31 | |||
沙冬青 A. mongolicus | 枝叶Branch and leaf | 1 167.344 | 0.747 | — | 701.17 | 707.19 | 0.98 | 149.84 | 0.02 | ||
根系Root | 795.728 | 0.771 | — | 723.97 | 729.99 | 0.95 | 177.83 | 0.06 | |||
整株All parts | — | — | — | — | — | 0.98 | 230.21 | 0.02 | |||
沙蒿 A. desertorum | 枝叶Branch and leaf | 382.890 | 0.904 | — | 965.46 | 972.49 | 0.82 | 133.07 | 0.19 | ||
根系Root | 248.060 | 0.783 | — | 919.23 | 926.27 | 0.71 | 106.73 | 0.30 | |||
整株All parts | — | — | — | — | — | 0.85 | 188.70 | 0.15 | |||
沙棘 H. rhamnoides | 茎干 Stem | 114.748 | 1.149 | — | 562.74 | 567.95 | 0.77 | 204.41 | 0.25 | ||
枝叶Branch and leaf | 401.915 | 0.975 | — | 600.69 | 605.90 | 0.89 | 335.46 | 0.12 | |||
根系Root | 194.627 | 0.631 | — | 547.13 | 552.34 | 0.75 | 136.70 | 0.26 | |||
整株All parts | — | — | — | — | — | 0.88 | 561.27 | 0.12 | |||
沙柳 S. psammophila | 茎干 Stem | 6.431 | 1.656 | — | 946.33 | 952.76 | 0.72 | 488.83 | 0.34 | ||
枝叶Branch and leaf | 31.266 | 0.600 | — | 1 127.68 | 1 134.11 | 0.80 | 1 594.45 | 0.22 | |||
根系Root | 40.485 | 1.449 | — | 1 079.72 | 1 086.15 | 0.84 | 1 011.48 | 0.17 | |||
整株All parts | — | — | — | — | — | 0.83 | 2 870.21 | 0.19 | |||
四合木 T. mongolica | 枝叶Branch and leaf | 2 851.685 | 0.857 | — | 1 047.25 | 1 054.16 | 0.92 | 288.54 | 0.08 | ||
根系Root | 928.884 | 0.578 | — | 966.60 | 973.51 | 0.76 | 144.13 | 0.24 | |||
整株All parts | — | — | — | — | — | 0.90 | 406.70 | 0.10 | |||
梭梭 H. ammodendron | 茎干 Stem | 229.545 | 0.330 | 1.120 | 612.70 | 620.58 | 0.90 | 65.82 | 0.11 | ||
枝叶Branch and leaf | 509.570 | 0.460 | 1.140 | 722.54 | 730.42 | 0.85 | 228.13 | 0.15 | |||
根系Root | 311.040 | 0.520 | 1.150 | 661.80 | 669.68 | 0.89 | 127.15 | 0.11 | |||
整株All parts | — | — | — | — | — | 0.89 | 390.92 | 0.11 | |||
柠条 C. korshinskii | 茎干 Stem | 645.658 | 0.443 | — | 2 045.58 | 2 054.23 | 0.57 | 445.51 | 0.43 | ||
枝叶Branch and leaf | 456.444 | 0.503 | — | 2 111.22 | 2 119.87 | 0.69 | 278.59 | 0.33 | |||
根系Root | 339.742 | 0.534 | — | 2 033.75 | 2 042.40 | 0.76 | 195.46 | 0.26 | |||
整株All parts | — | — | — | — | — | 0.70 | 843.99 | 0.32 | |||
杨柴 C. fruticosum var. mongolicum | 枝叶Branch and leaf | 157.261 | 0.897 | — | 459.23 | 463.81 | 0.68 | 129.95 | 0.38 | ||
根系Root | 53.242 | 0.694 | — | 362.94 | 367.52 | 0.66 | 33.15 | 0.36 | |||
整株All parts | — | — | — | — | — | 0.71 | 149.15 | 0.34 |
表5
13种灌木各组分含碳率(均值±标准差)①"
物种 Shrub species | 各组分含碳率 Carbon content of each component (%) | 根冠比 Root-shoot ratio | 加权平均含碳率 Weighted average carbon content (%) | ||
茎干 Stem | 枝叶Branch and leaf | 根系 Root | |||
霸王 Sarcozygium xanthoxylon | — | 44.31±4.21Aa | 41.25±6.12ABCa | 1.80±0.38 | 42.37 |
白刺 Nitraria tangutorum | — | 41.29±5.63Aa | 42.03±5.01ABCa | 2.26±1.98 | 41.78 |
柽柳 Tamarix chinensis | 43.72±12.24Aa | 28.86±6.51Bb | 36.03±10.10BCab | 1.07±0.15 | 34.68 |
红砂 Reaumuria songarica | — | 38.49±3.04ABa | 41.59±2.97ABCa | 0.43±0.13 | 39.40 |
沙地柏 Sabina vulgaris | — | 37.98±8.87ABa | 32.96±5.35Ca | 0.45±0.10 | 36.37 |
沙冬青 Ammopiptanthus mongolicus | — | 42.74±10.21Aa | 41.34±6.03ABCa | 0.92±0.74 | 42.12 |
沙蒿 Artemisia desertorum | — | 40.52±8.08Aa | 34.55±11.05BCa | 0.83±0.79 | 38.05 |
沙棘 Hippophae rhamnoides | 33.57±16.39Aa | 37.76±4.86ABa | 46.97±11.67Aa | 0.22±0.09 | 38.41 |
沙柳 Salix psammophila | 42.56±11.16Aa | 38.88±9.88Aa | 38.62±9.87ABCa | 0.61±0.20 | 39.49 |
四合木 Tetraena mongolica | — | 37.19±9.96ABa | 32.49±7.11Ca | 0.55±0.22 | 35.59 |
梭梭 Haloxylon ammodendron | 35.58±2.61Aa | 43.41±5.58ABb | 43.85±6.71ABa | 0.41±0.06 | 39.80 |
柠条 Caragana korshinskii | 41.20±11.13Aa | 36.87±9.76ABa | 33.00±7.59Ca | 0.32±0.15 | 37.91 |
杨柴 Corethrodendron fruticosum var. mongolicum | — | 39.10±9.04Aa | 36.35±9.73BCa | 0.40±0.30 | 38.38 |
蔡会德, 卢 峰, 徐占勇, 等. 桉树相容性可加性立木生物量模型系统研建. 林业资源管理, 2023, (1): 87- 93. | |
Cai H D, Lu F, Xu Z Y, et al. Research and development of compatible and additive individual tree biomass model systems for Eucalyptus. Forest Resources Management, 2023, (1): 87- 93. | |
曹 磊, 李海奎. 两种相容性生物量模型的比较: 以广东省3个阔叶树种为例. 生态学杂志, 2019, 38 (6): 1916- 1925. | |
Cao L, Li H K. Comparison of two compatible biomass models: a case study from three broadleaved tree species in Guangdong. Chinese Journal of Ecology, 2019, 38 (6): 1916- 1925. | |
党晓宏, 高 永, 蒙仲举, 等. 西鄂尔多斯地区5种天然荒漠优势灌丛含碳率的研究. 中南林业科技大学学报, 2017a, 37 (5): 74- 79. | |
Dang X H, Gao Y, Meng Z J, et al. Carbon content rates analysis of five natural desert shrub species in west Erdos region. Journal of Central South University of Forestry & Technology, 2017a, 37 (5): 74- 79. | |
党晓宏, 高 永, 蒙仲举, 等. 西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型. 中国沙漠, 2017b, 37 (1): 100- 108.
doi: 10.7522/j.issn.1000-694X.2015.00201 |
|
Dang X H, Gao Y, Meng Z J, et al. Biomass allocation patterns and estimation model of five desert shrub species in west Erdos region. Journal of Desert Research, 2017b, 37 (1): 100- 108.
doi: 10.7522/j.issn.1000-694X.2015.00201 |
|
国家林业和草原局. 2024. 中华人民共和国国家标准(GB/T 43648—2024): 主要树种立木生物量模型与碳计量参数. 北京: 中国标准出版社. | |
(National Forestry and Grassland Administration. 2024. National standard of the People’s Republic of China GB/T 43648—2024: main tree biomass models and related parameters to carbon accounting. Beijing: China Standards Press. [in Chinese]). | |
郭玉东, 张秋良, 陈晓燕, 等. 库布齐沙漠地区人工灌木林生物量模型构建. 西北农林科技大学学报(自然科学版), 2022, 50 (4): 74- 82. | |
Guo Y D, Zhang Q L, Chen X Y, et al. Establishment of biomass models for artificial shrubbery in the Kubuqi Desert Area. Journal of Northwest A& F University (Natural Science Edition), 2022, 50 (4): 74- 82. | |
黄金廷, 侯光才, 陶正平, 等. 鄂尔多斯高原植被生态分区及其水文地质意义. 地质通报, 2008, (8): 1330- 1334.
doi: 10.3969/j.issn.1671-2552.2008.08.032 |
|
Huang J T, Hou G C, Tao Z P, et al. Vegetation ecological areas of the Erdos Plateau, China and their hydrogeological significance. Geological Bulletin of China, 2008, (8): 1330- 1334.
doi: 10.3969/j.issn.1671-2552.2008.08.032 |
|
金 铭, 李 毅, 王顺利, 等. 祁连山高山灌丛生物量及其分配特征. 干旱区地理, 2012, 35 (6): 952- 959. | |
Jin M, Li Y, Wang S L, et al. Alpine shrub biomass and allocation characteristics in Qilian Mountains. Arid Land Geography, 2012, 35 (6): 952- 959. | |
李文博, 谢龙飞, 董利虎. 考虑样地效应的人工杨树立木可加性生物量模型构建. 生态学杂志, 2024, 43 (8): 2513- 2522. | |
Li W B, Xie L F, Dong L H. Construction of additive biomass model of planted poplar trees considering plot effect. Chinese Journal of Ecology, 2024, 43 (8): 2513- 2522. | |
马 苏, 刘军会, 康玉麟, 等. 鄂尔多斯市防风固沙功能时空变化及驱动因素分析. 环境科学研究, 2022, 35 (11): 2477- 2485. | |
Ma S, Liu J H, Kang Y L, et al. Spatio-temporal changes of sand-fixing function and its driving factors in the Erdos. Research of Environmental Sciences, 2022, 35 (11): 2477- 2485. | |
童新风, 杨红玲, 宁志英, 等. 科尔沁沙地优势固沙灌木的生物量预测模型. 中国沙漠, 2018, 38 (3): 553- 559.
doi: 10.7522/j.issn.1000-694X.2018.00033 |
|
Tong X F, Yang H L, Ning Z Y, et al. Biomass estimation models for dominant saan-fixing shrubs in Horqin Sand Land. Journal of Desert Research, 2018, 38 (3): 553- 559.
doi: 10.7522/j.issn.1000-694X.2018.00033 |
|
吴举扬, 朱 江, 艾训儒, 等. 亚热带常绿落叶阔叶混交林木本植物生物量模型Meta分析. 中南林业科技大学学报, 2023, 43 (4): 111- 122. | |
Wu J Y, Zhu J, Ai X R, et al. Meta-analysis of woody plant biomass model of subtropical evergreen deciduous broadleaf mixed forests. Journal of Central South University of Forestry & Technology, 2023, 43 (4): 111- 122. | |
谢宗强, 王 杨, 唐志尧, 等. 2018. 中国常见灌木生物量模型手册. 北京: 科学出版社. | |
Xie Z Q, Wang Y, Tang Z Y, et al. 2018. Manual of biomass models for common shrubs in China. Beijing: Science Press. [in Chinese] | |
姚雪玲, 姜丽娜, 李 龙, 等. 浑善达克沙地6种灌木生物量模拟. 生态学报, 2019, 39 (3): 905- 912. | |
Yao X L, Jiang L N, Li L, et al. Biomass simulation of six shrub species in Otindag sandy land. Acta Ecologica Sinica, 2019, 39 (3): 905- 912. | |
曾伟生. 加权回归估计中不同权函数的对比分析. 林业资源管理, 2013, (5): 55- 61.
doi: 10.3969/j.issn.1002-6622.2013.05.011 |
|
Zeng W S. Comparison of different weight functions in weighted regression. Forest Resources Management, 2013, (5): 55- 61.
doi: 10.3969/j.issn.1002-6622.2013.05.011 |
|
曾伟生. 国内外灌木生物量模型研究综述. 世界林业研究, 2015, 28 (1): 31- 36. | |
Zeng W S. A review of studies of shrub biomass modeling. World Forestry Research, 2015, 28 (1): 31- 36. | |
赵梦颖, 孙 威, 罗永开, 等. 内蒙古26种常见温带灌木的生物量模型. 干旱区研究, 2019, 36 (5): 1219- 1228. | |
Zhao M Y, Sun W, Luo Y K, et al. Models for estimating the biomass of 26 temperate shrub species in Inner Mongolia, China. Arid Zone Research, 2019, 36 (5): 1219- 1228. | |
赵一之. 1992. 内蒙古珍惜濒危植物图谱. 北京: 中国农业科技出版社. | |
Zhao Y Z. 1992. Endangered plant atlas of Inner Mongolia. Beijing: China Agricultural Technology Press. [in Chinese] | |
钟泽兵, 周国英, 杨路存, 等. 柴达木盆地几种荒漠灌丛植被的生物量分配格局. 中国沙漠, 2014, 34 (4): 1042- 1048.
doi: 10.7522/j.issn.1000-694X.2013.00406 |
|
Zhong Z B, Zhou G Y, Yang L C, et al. The biomass allocation patterns of desert shrub vegetation in the Qaidam Basin, Qinghai, China. Journal of Desert Research, 2014, 34 (4): 1042- 1048.
doi: 10.7522/j.issn.1000-694X.2013.00406 |
|
Ali A, Xu M, Zhao Y T, et al. Allometric biomass equations for shrub and small tree species in Subtropical China. Silva Fennica, 2015, 49 (4): 1275. | |
Conti G, Gorne L D, Zeballos S R, et al. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography, 2019, 28 (7): 961- 975.
doi: 10.1111/geb.12907 |
|
Doraisami M, Kish R, Paroshy N J, et al. A global database of woody tissue carbon concentrations. Scientific Data, 2022, 9 (1): 284.
doi: 10.1038/s41597-022-01396-1 |
|
Estornell J, Ruiz L A, Velázquez-Martí B, et al. Estimation of shrub biomass by airborne lidar data in small forest stands. Forest Ecology and Management, 2011, 262 (9): 1697- 1703.
doi: 10.1016/j.foreco.2011.07.026 |
|
Heanes D L. Determination of total organic-C (carbon) in soils by an improved chromic acid digestion and spectrophotometric procedure (soil analysis). Communications in Soil Science and Plant Analysis, 1984, 15 (10): 1191- 1213.
doi: 10.1080/00103628409367551 |
|
Luo Y J, Wang X K, Ouyang Z Y, et al. A review of biomass equations for Chinaʼs tree species. Earth System Science Data, 2020, 12 (1): 21- 40.
doi: 10.5194/essd-12-21-2020 |
|
Ma S H, He F, Tian D, et al. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences, 2018, 15 (3): 693- 702.
doi: 10.5194/bg-15-693-2018 |
|
Poulter B, Frank D, Ciais P, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 2014, 509 (7502): 600- 603.
doi: 10.1038/nature13376 |
|
Rodrigues D P, Hamacher C, Estrada G C D, et al. Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquatic Botany, 2015, 120, 346- 351.
doi: 10.1016/j.aquabot.2014.10.004 |
|
Saatchi S S, Harris N L, Brown S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 2011, 108 (24): 9899- 9904.
doi: 10.1073/pnas.1019576108 |
|
Thomas S C, Martin A R. Carbon content of tree tissues: a synthesis. Forests, 2012, 3 (2): 332- 352.
doi: 10.3390/f3020332 |
|
Wang Y, Xu W T, Tang Z Y, et al. A biomass equation dataset for common shrub species in China. Earth System Science Data Discussions, 2021, 2021, 1- 18. | |
Yue J W, Guan J H, Deng L, et al. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in Northwest China. Life and Environment, 2018, 6, e4859. | |
Zeng H Q, Liu Q J, Feng Z W, et al. Biomass equations for four shrub species in Subtropical China. Journal of Forest Research, 2010, 15 (2): 83- 90.
doi: 10.1007/s10310-009-0150-8 |
[1] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[2] | 赵亚楠,赵亚峰,王红梅,马彦平,李志丽. 荒漠草原灌丛转变土壤水分与地上生物量空间异质性及阈值响应[J]. 林业科学, 2021, 57(12): 1-12. |
[3] | 孙涛,贾志清,刘虎俊,尚雯,刘江,张立恒. 民勤荒漠绿洲过渡带不同发育阶段白刺灌丛沙堆点格局特征[J]. 林业科学, 2020, 56(7): 12-21. |
[4] | 薛亚东,李迪强,李佳. 基于卫星追踪定位技术的库姆塔格沙漠野骆驼生境利用和迁移规律[J]. 林业科学, 2020, 56(10): 192-198. |
[5] | 何潇,雷渊才,薛春泉,徐期瑚,李海奎,曹磊. 广东省木荷碳密度及其不确定性估计[J]. 林业科学, 2019, 55(11): 163-171. |
[6] | 温阿敏, 郑江华, 陈梦, 穆晨, 马涛. 荒漠生态林区大沙鼠鼠洞密度的无人机遥感监测技术初探[J]. 林业科学, 2018, 54(4): 186-192. |
[7] | 郑婧, 佘维维, 白宇轩, 张宇清, 秦树高, 吴斌. 氮素和水分添加对毛乌素沙地油蒿群落优势植物叶片性状的影响[J]. 林业科学, 2018, 54(10): 164-171. |
[8] | 黄河清, 初红军, 曹杰, 布兰, 胡德夫, 张东, 李凯. 干旱荒漠草原马胃蝇蛆病疫源地感染源分布——以卡拉麦里山有蹄类自然保护区为例[J]. 林业科学, 2017, 53(11): 142-149. |
[9] | 何季, 吴波, 鲍芳, 李嘉竹, 姚斌, 叶静芸, 刘建康, 辛智鸣. 人工模拟增雨对乌兰布和沙漠白刺生物量分配的影响[J]. 林业科学, 2016, 52(5): 81-91. |
[10] | 陈婕, 徐庆, 高德强, 马迎宾. 西鄂尔多斯半日花及霸王的水分利用[J]. 林业科学, 2016, 52(2): 47-56. |
[11] | 白玉锋, 陈超群, 徐海量, 张广朋, 张沛, 凌红波. 塔里木河下游荒漠植被地上生物量空间分布与地下水埋深关系[J]. 林业科学, 2016, 52(11): 1-10. |
[12] | 陈文业, 赵明, 张继强, 袁海峰, 窦英杰, 朱丽, 陈旭. 甘肃敦煌西湖荒漠-湿地生态系统土壤水分含量对植被特征的影响[J]. 林业科学, 2015, 51(11): 8-16. |
[13] | 李岳诚, 张大治, 贺达汉. 荒漠景观固沙柠条林地地表甲虫多样性及其与环境因子的关系[J]. 林业科学, 2014, 50(5): 109-117. |
[14] | 江海澜;王俊刚;邓小霞;彭俊;马天文;何泽敏. 梭梭漠尺蛾幼虫取食后梭梭的生理响应[J]. 林业科学, 2012, 48(10): 170-173. |
[15] | 高志海;白黎娜;王琫瑜;李增元;李晓松;王玉魁;. 荒漠化土地土壤有机质含量的实测光谱估测[J]. 林业科学, 2011, 47(6): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||