林业科学 ›› 2023, Vol. 59 ›› Issue (4): 68-78.doi: 10.11707/j.1001-7488.LYKX20210980
韩娟1,2,李亚鹏2,田彦挺2,郭琪2,李云2,孙宇涵2,邓永平3,牛东升4,苏立琢5,李秀宇2,彭祚登1,*
收稿日期:
2021-12-30
出版日期:
2023-04-25
发布日期:
2023-07-05
通讯作者:
彭祚登
基金资助:
Juan Han1,2,Yapeng Li2,Yanting Tian2,Qi Guo2,Yun Li2,Yuhan Sun2,Yongping Deng3,Dongsheng Niu4,Lizhuo Su5,Xiuyu Li2,Zuodeng Peng1,*
Received:
2021-12-30
Online:
2023-04-25
Published:
2023-07-05
Contact:
Zuodeng Peng
摘要:
目的: 通过优化再生过程中的重要影响因素,建立刺槐离体叶片高效的再生体系,这将为刺槐苗木繁殖、诱变育种、遗传转化以及进一步开展刺槐分子育种等奠定良好的基础。方法: 以刺槐组培苗离体的叶片为外植体,观察叶片再生不定芽的整个过程,探究基因型、取材时期、黑暗处理时长以及植物生长调节剂对刺槐叶片再生不定芽的影响,同时筛选适合不定芽生根的IBA浓度。结果: 1)二倍体基因型普18-22再生能力最佳;2)组培苗继代45天为最佳外植体取材时期;3)黑暗处理14天为最佳黑暗处理时长;4)最佳的叶片再生不定芽的培养基为:MS+6-BA 3.0 mg·L?1+KT 1.0 mg·L?1+2,4-D 0.1 mg·L?1+蔗糖30 g·L?1+琼脂6.5 g·L?1;普18-22不定芽诱导率达96.67%,平均每个叶片再生7.4个不定芽;5)不定芽生根最佳培养基为:1/2MS+蔗糖30 g·L?1+琼脂6.5 g·L?1+IBA 0.3 mg·L?1;生根率达100%。结论: 以继代培养45天的二倍体刺槐组培苗普18-22叶片为外植体,接种至MS+6-BA 3.0 mg·L?1+KT 1.0 mg·L?1+2,4-D 0.1 mg·L?1+蔗糖30 g·L?1+琼脂6.5 g·L?1的再生培养基中,黑暗处理14 天后转移至正常光照培养,45天后将再生的不定芽转移至生根培养基1/2MS+蔗糖30 g·L?1+琼脂6.5 g·L?1+IBA 0.3 mg·L?1中,待不定芽生根后进行炼苗移栽,得到完整的再生植株。
中图分类号:
韩娟,李亚鹏,田彦挺,郭琪,李云,孙宇涵,邓永平,牛东升,苏立琢,李秀宇,彭祚登. 刺槐离体叶片高效再生体系的优化[J]. 林业科学, 2023, 59(4): 68-78.
Juan Han,Yapeng Li,Yanting Tian,Qi Guo,Yun Li,Yuhan Sun,Yongping Deng,Dongsheng Niu,Lizhuo Su,Xiuyu Li,Zuodeng Peng. Optimization of Efficient Regeneration System of Robinia pseudoacacia Leavesin vitro[J]. Scientia Silvae Sinicae, 2023, 59(4): 68-78.
表1
不定芽诱导培养基"
处理 Treatment | 植物生长调节剂 Plant growth regulators/(mg·L?1) | 接种数 Numbers of inoculations | |||
2,4-D | 6-BA | KT | TDZ | ||
SIM1 | 0.1 | 1 | 0 | 0 | 80 |
SIM2 | 0.1 | 1 | 0.5 | 0.02 | 80 |
SIM3 | 0.1 | 1 | 1 | 0.04 | 80 |
SIM4 | 0.1 | 3 | 0 | 0.02 | 80 |
SIM5 | 0.1 | 3 | 0.5 | 0.04 | 80 |
SIM6 | 0.1 | 3 | 1 | 0 | 80 |
SIM7 | 0.1 | 5 | 0 | 0.04 | 80 |
SIM8 | 0.1 | 5 | 0.5 | 0 | 80 |
SIM9 | 0.1 | 5 | 1 | 0.02 | 80 |
图4
不定芽再生过程 a.接种后7天左右的叶片;b.接种后15~20天的叶片;c.接种35天后再生的不定芽;d.接种45天后再生的不定芽;e: 接种50天后生长旺盛的不定芽;f–g: 叶片上部浅绿色愈伤组织分化的不定芽;h–i: 叶片底部分化的不定芽;j: 分化过程中的芽原基。 a. Leaves after inoculation for around 7 days; b. Leaves after inoculation for 15–20 days; c. Adventitious buds regenerated after inoculation for 35 days; d. Adventitious buds regenerated after inoculation for 45 days; e. Adventitious buds that grow vigorously after inoculation for 50 days; f–g: Adventitious bud differentiated from light green callus on upper leaves; h–i: Adventitious buds differentiated at the base of leaves; j: Bud primordia during regeneration."
表2
基因型对不定芽诱导的影响①"
基因型 Genotype | 不定芽诱导率 Induction rate of adventitious buds (%) | 平均不定芽诱导数 Average number of Adventitious buds induced | 愈伤组织、不定芽生长情况 Growth status of callus and adventitious buds |
普18-22 Pu-18-22 | 83.19±0.88a | 6.26±0.15a | 愈伤组织数量中等,不定芽分化数量多,长势旺盛,无玻璃化 Moderate number of calli, many differentiated adventitious buds, vigorous growth, no vitrification |
普28-15 Pu-28-15 | 76.37±0.18b | 4.4±0.15b | 愈伤组织数量中等,不定芽分化数量中等,生长较慢,无玻璃化,轻度褐化 Moderate number of calli, moderate number of differentiated adventitious buds, slow growth, no vitrification, light browning |
普26-8 Pu-26-8 | 59.44±1.06cd | 3.37±0.14cd | 愈伤组织数量较少,不定芽分化数量较少,生长较慢,轻度玻璃化 Small number of calli, small number of differentiated adventitious buds, slow growth, light vitrification |
243 | 42.67±1.63e | 2.27±0.2e | 水渍状愈伤组织过多,不定芽分化数量少,生长较慢,中度玻璃化,无褐化 Many waterlogged calli, small number of differentiated adventitious buds, slow growth, moderate vitrification, no browning |
D18-8 | 61.83±1.99c | 3.48±0.29c | 愈伤组织数量中等,不定芽分化数量较少,长势中等,轻微玻璃化 Moderate number of calli, small number of differentiated adventitious buds, moderate growth, light vitrification |
表3
取材时期对不定芽诱导的影响①"
取材时期 Sampling period/d | 不定芽诱导率 Induction rate of adventitious buds (%) | 平均不定芽诱导数 Average number of adventitious buds induced | 愈伤组织、不定芽生长情况 Growth status of callus and adventitious buds |
30 | 63.59±1.16c | 1.76±0.13c | 愈伤组织轻度褐化,不定芽分化较慢、长势一般 Light browning of callus, slow differentiation of adventitious buds, ordinary growth |
45 | 87.53±0.79a | 3.52±0.03a | 愈伤组织无褐化,不定芽分化较快、长势旺盛 No browning of callus, rapid differentiation of adventitious buds, vigorous growth |
60 | 75.88±1.38b | 2.58±0.14b | 愈伤组织生长较慢,不定芽分化较慢,长势良好 Slow growth of callus, slow differentiation of adventitious buds, moderate growth |
表4
植物生长调节剂对不定芽诱导的影响①"
植物生长调节剂组合 Combination of plant growth regulators | 不定芽诱导率 Induction rate of adventitious buds (%) | 平均不定芽诱导数 Average number of adventitious buds induced | 愈伤组织、不定芽生长情况 Growth status of callus and adventitious buds |
SIM1 | 54.87±0.02f | 1.5±0.1d | 愈伤组织较少;不定芽分化慢,长势差,无玻璃化 Small number of calli, slow differentiation of adventitious buds, poorer growth, no vitrification |
SIM2 | 69.63±0.05e | 1.67±0.24d | 愈伤组织较少;不定芽分化慢,长势较差,轻微玻璃化 Small number of calli, Slow differentiation of adventitious buds, poor growth, light vitrification |
SIM3 | 74.86±0.03e | 2.18±0.08d | 愈伤组织一般;不定芽分化较慢,长势一般,轻度玻璃化 Ordinary number of calli, slow differentiation of adventitious buds, poor growth, light vitrification |
SIM4 | 77.24±0.03cde | 3.19±0.2c | 愈伤组织一般;不定芽分化中等,长势良好,无玻璃化 Ordinary number of calli, medium differentiation of adventitious buds, good growth, no vitrification |
SIM5 | 82.91±0.03bcd | 4.24±0.22b | 愈伤组织适中;不定芽分化较快,长势良好,轻度玻璃化 Medium number of calli, rapid differentiation of adventitious buds, good growth, light vitrification |
SIM6 | 96.67±0.01a | 7.4±0.4a | 愈伤组织适中;不定芽分化快,长势旺盛,无玻璃化 Medium number of calli, faster differentiation of adventitious buds, vigorous, no vitrification |
SIM7 | 84.24±0.01bc | 4.36±0.1b | 愈伤组织较多;不定芽分化较慢,长势良好,轻度玻璃化 Many number of calli, slow differentiation of adventitious buds, good growth, light vitrification |
SIM8 | 88.64±0.02b | 4.62±0.37b | 愈伤组织较多;不定芽分化较慢,长势良好,轻度玻璃化 Many number of calli, slow differentiation of adventitious buds, good growth, light vitrification |
SIM9 | 76.06±0.02de | 4.23±0.17b | 愈伤组织较多;不定分化慢,长势一般,中度玻璃化 Many number of calli, slow differentiation of adventitious buds, poor growth, moderate vitrification |
郭 烨. 2020. 枣树优良品种叶片离体再生体系构建与多倍体诱导初探. 北京: 北京林业大学. | |
Guo Y. 2020. In vitro regeneration system construction and polyploid induction of Ziziphus jujuba Mill. superior variety leaves. Beijing: Beijing Forestry University. [in Chinese] | |
红 艳. 2007. 刺槐体细胞胚胎发生及植株再生的研究. 呼和浩特: 内蒙古农业大学. | |
Hong Y. 2007. Studies on somatic embryogenesis and plant regeneration of Robinia pseudoacacia. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
姜 丹. 2012. 刺槐子叶不定芽再生及多倍体诱导的研究. 北京: 北京林业大学. | |
Jiang D. 2012. Studies on adventitious buds regeneration and polyploid induction from cotyledons of Robinia pseudoacacia. Beijing: Beijing Forestry University. [in Chinese] | |
李秀宇. 2020. 四倍体刺槐苗期表型生理特性及再生能力的评价. 北京: 北京林业大学. | |
Li X Y. 2020. Evaluation of phenotypic physiological characteristics and regeneration ability of tetraploid Robinia pseudoacacia at seedling stage. Beijing: Beijing Forestry University. [in Chinese] | |
刘梦昕, 曾 洁, 黄凤智, 等. 明日叶叶片的丛生芽诱导和植株高频再生. 植物生理学报, 2014, 50 (1): 45- 50.
doi: 10.13592/j.cnki.ppj.2014.01.004 |
|
Liu M X, Zeng J, Huang F Z, et al. Tufted bud induction and high frequency plant regeneration from leaves of Angelica keiskei Koidz . Chinese Journal of Plant Physiology, 2014, 50 (1): 45- 50.
doi: 10.13592/j.cnki.ppj.2014.01.004 |
|
刘秀梅. 2004. 槐树高频再生体系建立及抗盐碱基因转化研究. 大连: 辽宁师范大学. | |
Liu X M. 2004. Establishment of high frequency regeneration system and transformation of saline-alkali resistance gene in Sophora japonica. Dalian: Liaoning Normal University. [in Chinese] | |
罗 虹, 温小蕙, 周圆圆, 等. 芳香堆心菊离体再生体系的建立. 植物学报, 2020, 55 (3): 318- 328.
doi: 10.11983/CBB19211 |
|
Luo H, Wen X H, Zhou Y Y, et al. Establishment of in vitro regeneration system of Heleniun aromaticum . Chinese Bulletin of Botany, 2020, 55 (3): 318- 328.
doi: 10.11983/CBB19211 |
|
彭祚登, 马履一, 李 云, 等. 2020. 刺槐燃料能源林培育研究. 北京: 中国林业出版社. | |
Peng Z D, Ma L Y, Li Y, et al. 2020. Cultivation of Robinia pseudoacacia fuel energy forest. Beijing: China Forestry Publishing House. [in Chinese] | |
秦爱光, 罗晓芳. 农杆菌介导转录因子DREB1C基因转化速生型刺槐的研究 . 北京林业大学学报, 2007, 29 (6): 29- 34.
doi: 10.3321/j.issn:1000-1522.2007.06.005 |
|
Qin A G, Luo X F. Agrobacterium tumefaciens-mediated transformation of DREB1C gene into fast-growing Robinia pseudoacacia . Journal of Beijing Forestry University, 2007, 29 (6): 29- 34.
doi: 10.3321/j.issn:1000-1522.2007.06.005 |
|
任云辉. 2016. 刺槐下胚轴不定芽再生及四倍体诱导研究. 北京: 北京林业大学. | |
Ren Y H. 2016. Studies on adventitious bud regeneration and tetraploid induction of Robinia pseudoacacia hypocotyl. Beijing: Beijing Forestry University. [in Chinese] | |
尚瑀琪, 杨模华, 段润梅, 等. 马尾松优良家系不定芽诱导及腋芽高效增殖组培体系构建与优化. 中南林业科技大学学报, 2021, 41 (9): 1- 13.
doi: 10.14067/j.cnki.1673-923x.2021.09.001 |
|
Shang Y Q, Yang M H, Duan R M, et al. Establishment and optimization of tissue culture system for adventitious bud induction and efficient axillary bud proliferation in Masson pine families. Journal of Central South University of Forestry and Technology, 2021, 41 (9): 1- 13.
doi: 10.14067/j.cnki.1673-923x.2021.09.001 |
|
孙清荣, 关秋竹, 陶吉寒, 等. 红色西洋梨品种‘红星’的组织培养及离体叶片不定梢再生. 植物生理学报, 2020, 56 (4): 771- 778.
doi: 10.13592/j.cnki.ppj.2019.0549 |
|
Sun Q R, Guan Q Z, Tao J H, et al. Tissue culture and adventitious shoot regeneration from in vitro leaves of red western pear 'Hongxing' . Chinese Journal of Plant Physiology, 2020, 56 (4): 771- 778.
doi: 10.13592/j.cnki.ppj.2019.0549 |
|
田琳琳, 赵梁军, 张 睿, 等. 无刺桅杆槐和无刺槐再生体系的研究. 中国农业大学学报, 2010, 15 (4): 39- 44.
doi: 10.11841/j.issn.1007-4333.2010.04.007 |
|
Tian L L, Zhao L J, Zhang R, et al. Study on regeneration system of Robinia pseudoacacia without spiny mast and Robinia pseudoacacia . Journal of China Agricultural University, 2010, 15 (4): 39- 44.
doi: 10.11841/j.issn.1007-4333.2010.04.007 |
|
王启忠. 用组织培养繁殖刺槐优良无性系苗木. 林业科技开发, 1988, (4): 30- 33.
doi: 10.13360/j.issn.1000-8101.1988.04.014 |
|
Wang Q Z. Propagation of Robinia pseudoacacia clones by tissue culture . Forest Science and Technology Development, 1988, (4): 30- 33.
doi: 10.13360/j.issn.1000-8101.1988.04.014 |
|
王兴翠, 林桂玉, 乔 宁, 等. 耐盐碱刺槐离体再生快繁体系的建立与优化. 安徽大学学报(自然科学版), 2018, 42 (1): 100- 108. | |
Wang X C, Lin G Y, Qiao N, et al. Establishment and optimization of in vitro regeneration and rapid propagation system of saline-alkali tolerant Robinia pseudoacacia . Journal of Anhui University (Natural Science Edition), 2018, 42 (1): 100- 108. | |
王晓琪, 胥 明, 赵 健, 等. 北美枫香雄花和花序轴诱导体细胞胚胎发生. 北京林业大学学报, 2016, 38 (3): 32- 37.
doi: 10.13332/j.1000-1522.20150197 |
|
Wang X Q, Xu M, Zhao J, et al. Somatic embryogenesis induced by male flowers and inflorescence axes of Liquidambar sweetgum . Journal of Beijing Forestry University, 2016, 38 (3): 32- 37.
doi: 10.13332/j.1000-1522.20150197 |
|
吴丽芳, 魏晓梅, 陆伟东, 等. 白刺花胚性愈伤组织诱导和植株再生体系建立. 植物生理学报, 2019a, 55 (2): 218- 224.
doi: 10.13592/j.cnki.ppj.2018.0418 |
|
Wu L F, Wei X M, Lu W D, et al. Embryogenic callus induction and plant regeneration system establishment of Nitraria alba . Chinese Journal of Plant Physiology, 2019a, 55 (2): 218- 224.
doi: 10.13592/j.cnki.ppj.2018.0418 |
|
吴丽芳, 魏晓梅, 陆伟东, 等. 白刺花胚性愈伤组织诱导及体细胞胚发生. 林业科学, 2019b, 55 (7): 170- 177.
doi: 10.11707/j.1001-7488.20190719 |
|
Wu L F, Wei X M, Lu W D, et al. Embryogenic callus induction and somatic embryogenesis of Nitraria alba . Scientia Silvae Sinicae, 2019b, 55 (7): 170- 177.
doi: 10.11707/j.1001-7488.20190719 |
|
习 洋, 胡瑞阳, 王 欢, 等. 刺槐未成熟合子胚的体细胞胚胎发生和植株再生. 林业科学, 2012, 48 (1): 60- 69.
doi: 10.11707/j.1001-7488.20120111 |
|
Xi Y, Hu R Y, Wang H, et al. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Robinia pseudoacacia . Scientia Silvae Sinicae, 2012, 48 (1): 60- 69.
doi: 10.11707/j.1001-7488.20120111 |
|
咸宏康, 支秋娟, 李 卉, 等. 金樱子(Rosa laevigata Michx . )叶片直接再生不定芽体系的建立. 北方园艺, 2019, (13): 93- 100. | |
Xian H K, Zhi Q J, Li H, et al. Establishment of direct regeneration adventitious bud system from leaves of Rosa laevigata Michx . Northern Horticulture, 2019, (13): 93- 100. | |
许秀玉, 施季森, 席梦利, 等. 墨西哥落羽杉离体培养及再生体系的建立. 林业科学, 2007, (10): 40- 44.
doi: 10.3321/j.issn:1001-7488.2007.10.007 |
|
Xu X Y, Shi J S, Xi M L et al. In vitro culture and establishment of regeneration system of Sequoia mexicana . Scientia Silvae Sinicae, 2007, (10): 40- 44.
doi: 10.3321/j.issn:1001-7488.2007.10.007 |
|
燕丽萍, 夏 阳, 王太明, 等. 四倍体刺槐立体茎段高效再生体系的建立. 山东林业科技, 2006, 6 (3): 1- 3.
doi: 10.3969/j.issn.1002-2724.2006.03.001 |
|
Yan L P, Xia Y, Wang T M, et al. Establishment of efficient regeneration system of tetraploid Robinia pseudoacacia stem segments . Shandong Forestry Science and Technology, 2006, 6 (3): 1- 3.
doi: 10.3969/j.issn.1002-2724.2006.03.001 |
|
于学宁. 2008. 刺槐Na+/H+逆向转运蛋白基因克隆与序列分析及刺槐再生体系建立. 泰安: 山东农业大学. | |
Yu X N. 2008. Cloning and sequence analysis of Na+/H+ antiporter gene and establishment of regeneration system of Robinia pseudoacacia. Taian: Shandong Agricultural University. [in Chinese] | |
于亚军, 代汉萍, 李宝江. 植物激素和生长调节剂在果树组织培养中的应用. 北方园艺, 2002, (6): 68- 70.
doi: 10.3969/j.issn.1001-0009.2002.06.044 |
|
Yu Y J, Dai H P, Li B J. Application of plant hormones and growth regulators in fruit tree tissue culture. Northern Horticulture, 2002, (6): 68- 70.
doi: 10.3969/j.issn.1001-0009.2002.06.044 |
|
岳建华, 董 艳, 王小画, 等. 早花百子莲叶片器官发生和胚胎发生再生体系的建立. 植物学报, 2020, 55 (5): 588- 595.
doi: 10.11983/CBB20019 |
|
Yue J H, Dong Y, Wang X H, et al. Establishment of organogenesis and embryogenesis regeneration system in leaves of Agapanthus praecox Willd . Chinese Journal of Plant, 2020, 55 (5): 588- 595.
doi: 10.11983/CBB20019 |
|
曾文丹, 严华兵, 肖 亮, 等. 粉葛叶片愈伤组织诱导及植株再生. 植物生理学报, 2021, 57 (5): 1098- 1104.
doi: 10.13592/j.cnki.ppj.2021.0056 |
|
Zeng W D, Yan H B, Xiao L, et al. Callus induction and plant regeneration from leaves of kudzu. Chinese Journal of Plant Physiology, 2021, 57 (5): 1098- 1104.
doi: 10.13592/j.cnki.ppj.2021.0056 |
|
张 艳, 南相日, 满为群, 等. 大豆离体培养及高频再生基因型的筛选. 植物生理学通讯, 2010, 46 (11): 1135- 1139. | |
Zhang Y, Nan X R, Man W Q, et al. In vitro culture and high frequency regeneration genotypes screening of soybean. Plant Physiology Communications, 2010, 46 (11): 1135- 1139. | |
赵 欢, 刘克林, 郑高言, 等. 多肉植物‘丽娜莲’Echeveria lilacina kimnach & Moran再生体系的建立 . 分子植物育种, 2018, 16 (18): 6061- 6067. | |
Zhao H, Liu K L, Zheng G Y, et al. Establishment of regeneration system in the succulent Plant Echeveria lilacina Kimnach & Moran . Molecular Plant Breeding, 2018, 16 (18): 6061- 6067. | |
Bala R, Lauga J S, Beniwal V S. Efficient in vitro direct regeneration from nodal explants of Simmondsia chinensis (Link) Schneider-a potential multipurpose plant . Plant Cell Biotechnology and Molecular, 2018, 19 (7/8): 256- 265. | |
Debernardi J M, Tricoli D M, Ercoli M F, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants . Nature Biotechnology, 2020, 38 (11): 1274- 1279.
doi: 10.1038/s41587-020-0703-0 |
|
Feng Q, Xiao L, He Y Z, et al. Highly efficient and genotype-independent genetic transformation and gene-editing in watermelon (Citrullus lanatus) by utilizing achimeric GRF4-GIF1 gene . Journal of Integrative Plant Biology, 2021, 63 (12): 2038- 2042.
doi: 10.1111/jipb.13199 |
|
Han K H, Davis J M, Keathley D E. Differential responses persist in shoot explants regenerated from callus of two mature black locust trees. Trees Physiology, 1990, 6 (2): 235- 240.
doi: 10.1093/treephys/6.2.235 |
|
Han K H, Gordon M P, Keathley D E. Genetic transformation of black locust (Robinia pseudoacacia L.) . Biotechnology in Agriculture and Forestry, 2000, 44, 273- 282. | |
Merkle S A. 1992. Somatic embryogenesis in black locust. Black Locust: Biology, Culture, and Utilization Proceeding, 136-148. | |
Merkle S A, Wiecko A T. Regeneration of Robinia pseudoacacia via somatic embryogenesis . Canadian Journal of Forest Research, 1989, 19 (2): 285- 288.
doi: 10.1139/x89-043 |
|
Rathinapriya P, Satish L, Rameshkumar R, et al. Role of activated charcoal and amino acids in developing an efficient regeneration system for foxtail millet (Setaria italica (L.) Beauv. ) using leaf base segments . Physiology and Molecular Biology of Plants:an International Journal of Functional Plant Biology, 2019, 25 (2): 533- 548.
doi: 10.1007/s12298-018-0619-z |
|
Shin J, Bae S, Seo P J. De novo shoot organogenesis during plant regeneration . Journal of Experimental Botany, 2020, 71 (1): 63- 72.
doi: 10.1093/jxb/erz395 |
|
Woo J H, Choi M S, Joung E Y, et al. Improvement of black locust (Robinia pseudoacacia L.) through tissue culture. I. Micropropagation and somatic embryogenesis . Journal of Korean Forestry Society, 1995a, 84 (1): 41- 47. | |
Woo J H, Choi M S, Park Y G. Plant regeneration from callus cultures of black locust (Robinia Pseudoaeaeia L.) . Journal of Korean Forestry Society, 1995b, 84 (2): 145- 150. | |
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants, 7(11): 1453−1460. |
[1] | 李平平,王彦辉,段文标,王依瑞,于澎涛,甄理,李志鑫,尚会军,史再军,于艺鹏. 黄土高原刺槐人工林立地指数变化及评价[J]. 林业科学, 2023, 59(4): 18-31. |
[2] | 李彤彤,郭素娟,李艳华. 基于叶片形态数字化分析的板栗品种鉴别[J]. 林业科学, 2023, 59(3): 115-126. |
[3] | 杨菲,林毅雁,陈立欣,韩璐,吴应明,喻雅洁. 晋西黄土区油松和刺槐2种人工林内乔灌优势种的土壤水分利用及水分生态位特征[J]. 林业科学, 2022, 58(6): 1-12. |
[4] | 李爱博,周本智,李春友,羊美娟,汤丽萍,王利仙. 树种配置和叶元素含量的空气负离子浓度效应[J]. 林业科学, 2022, 58(5): 65-74. |
[5] | 林庆芝,朱祥元,毛培利,朱琳,郭龙梅,李泽秀,曹帮华,郝迎东,谭海涛,洪丕征,卢小军. NaCl和PEG胁迫对不同大小刺槐种子萌发和幼苗生长的影响[J]. 林业科学, 2022, 58(2): 100-112. |
[6] | 温文杰,王冬梅. 青海黄土高寒区4种典型人工林树木叶片碳氮磷含量及化学计量特征[J]. 林业科学, 2022, 58(1): 22-31. |
[7] | 祁琳,郭龙梅,刘尤德,曹帮华,毛培利,李泽秀. 刺槐幼苗非结构性碳水化合物对NaCl胁迫的动态响应[J]. 林业科学, 2022, 58(1): 32-42. |
[8] | 曹德美,张亚红,成星奇,项晓冬,张磊,胡建军. 青杨不同种群叶片表型性状的遗传变异[J]. 林业科学, 2021, 57(8): 56-67. |
[9] | 陈海波,郭丽,张真,孔祥波,张苏芳,刘福. 杨树人工林种间混交对生长性状和食叶害虫抗性的影响[J]. 林业科学, 2021, 57(8): 133-140. |
[10] | 彭金根,姜雪茹,谢利娟,刘燕. 小叶黄杨越冬叶片呈色及其温光影响因子[J]. 林业科学, 2021, 57(2): 49-61. |
[11] | 徐瑞晶,胡璇,刘广路,郭雯,梁昌强,孔祥河. 海南岛热带低地雨林2种攀缘竹的叶片功能性状差异[J]. 林业科学, 2021, 57(12): 155-166. |
[12] | 杨茂林,冀晓东,孙恒,丛旭,杨光,侯凯,任一凡. 不同年龄刺槐枝、干和根的物理力学性质对比[J]. 林业科学, 2020, 56(7): 115-122. |
[13] | 杨佳骏,吴永波,张燕红. 高温与干旱胁迫对‘南林895杨’扦插苗生长和超微结构的影响[J]. 林业科学, 2020, 56(5): 176-183. |
[14] | 刘闵豪,徐郡儡,叶靖,李周岐,范睿深,李龙. 农杆菌介导的杜仲叶片愈伤组织遗传转化体系[J]. 林业科学, 2020, 56(2): 79-88. |
[15] | 沈阔程,陈倩文,齐梅,彭子嘉,樊军锋,余仲东. 杨树叶片结构与抗锈菌侵染的相关性[J]. 林业科学, 2020, 56(12): 75-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||