Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (7): 65-72.doi: 10.11707/j.1001-7488.LYKX20220819
Previous Articles Next Articles
Shufeng Guo,Yuan Guo,Yan Chen,He Li,Shengpei Zhang*
Received:
2022-11-16
Online:
2024-07-25
Published:
2024-08-19
Contact:
Shengpei Zhang
CLC Number:
Shufeng Guo,Yuan Guo,Yan Chen,He Li,Shengpei Zhang. Functional Analysis of Cysteine Protease CfAtg4 in Colletotrichum fructicola on Camellia oleifera[J]. Scientia Silvae Sinicae, 2024, 60(7): 65-72.
Table 1
Primers used in this study"
引物名称Primer | 引物序列Sequence (5’-3’) |
CfATG4-1F | TTCCGAAGCTAGGAAATCCA |
CfATG4-2R | CGCGGATGCCATCGAGAGTA |
CfATG4-3F | GGCGAGCAAGGCGCACAGGC |
CfATG4-4R | GGTCGAAGTTCTCGAGTGTG |
CfATG4-5F | GCGTGAACCACTGCTGGTAG |
H855R | GCTGATCTGACCAGTTGC |
CfATG4-7F | ATGGCTGCTGTGGATCTCGG |
CfATG4-8R | TCAAACATCGAGGATAGTGT |
CfATG4-ProF | ACTCACTATAGGGCGAATTGGGTACTCA AATTGGTT CATGGAGGTTTCGTTGTCGA |
CfATG4-ProR | CCTCGCCCTTGCTCACCATCGCGGAT GCCATCGAGAGTA |
GFPF | ATGGTGAGCAAGGGCGAGG |
GFPR | CTTGTACAGCTCGTCCATGC |
CfATG4F | GCATGGACGAGCTGTACAAGATGGC TGCTGTGGATCTCGG |
CfATG4R | CACCACCCCGGTGAACAGCTCCTCGCCCTT GCTCACTCAAACATCGAGGATAGTGT |
Hyg F | GGCTTGGCTCCAGCTAGTGGAGGT |
Hyg R | CTCTATTCCTTTGCCCTCG |
Fig.1
Phylogenetic analysis and domain predication of CfAtg4 A: Phylogenetic tree of Atg4 protein. B: The domain predication of CfAtg4 protein. CfAtg4 consists of 447 amino acids, including the 85–93 amino acids of a region of low compositional complexity and the 108–400 amino acids of a group of cysteine peptidases which constitute MEROPS peptidase family C54."
高亚兰, 何苑皞, 李 河. 调控油茶果生刺盘孢 bZIP 转录因子 CfAp1 的生物学功能. 林业科学, 2020, 56 (9): 30- 39.
doi: 10.11707/j.1001-7488.20200904 |
|
Gao Y L, He Y H, Li H. Biological Function bZIP-Type Transcription Factor CfAp1 in Colletotrichum fructicola. Scientia Silvae Sinicae, 2020, 56 (9): 30- 39.
doi: 10.11707/j.1001-7488.20200904 |
|
郭 源, 李 河, 周国英, 等. 自噬相关蛋白 CfAtg8 在果生刺盘孢中的功能分析. 菌物学报, 2021, 40 (3): 592- 602. | |
Guo Y, Li H, Zhou G Y, et al. Functional analysis of the autophagy-related protein CfAtg8 in Colletotrichum fructicola. Mycosystema, 2021, 40 (3): 592- 602. | |
Chen Y, Wang B, Chen J, et al. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. Frontiers in Plant Science, 2015, 6, 189. | |
Hirata E, Ohya Y, Suzuki K. Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS ONE, 2017, 12 (7): e0181047.
doi: 10.1371/journal.pone.0181047 |
|
Lang T, Schaeffeler E, Bernreuther D, et al. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. The EMBO Journal, 1998, 17 (13): 3597- 3607.
doi: 10.1093/emboj/17.13.3597 |
|
Li H, Zhou G Y, Liu J A, et al. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on tea-oil trees in China. PLoS ONE, 2016, 11 (6): e0156841.
doi: 10.1371/journal.pone.0156841 |
|
Liu N, Zhou S, Li B, et al. Involvement of the autophagy protein Atg6 in development and virulence in the gray mold fungus Botrytis cinerea. Frontiers in Microbiology, 2021, 2021, 12. | |
Liu T B, Liu X H, Lu J P, et al. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy, 2010, 6 (1): 74- 85.
doi: 10.4161/auto.6.1.10438 |
|
Liu X H, Gao H M, Xu F, et al. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy, 2012, 8 (10): 1415- 1425.
doi: 10.4161/auto.21274 |
|
Lv W, Wang C, Yang N, et al. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7 (1): 1- 12.
doi: 10.1038/s41598-016-0028-x |
|
Maruyama T, Noda N N. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of Antibiotics, 2018, 71 (1): 72- 78.
doi: 10.1038/ja.2017.104 |
|
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011a, 147 (4): 728- 741.
doi: 10.1016/j.cell.2011.10.026 |
|
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 2011b, 27, 107- 132.
doi: 10.1146/annurev-cellbio-092910-154005 |
|
Molina L, Kahmann R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell, 19: 2293–2309. | |
Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 2007, 130 (1): 165- 178.
doi: 10.1016/j.cell.2007.05.021 |
|
Scherz‐Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal, 2007, 26 (7): 1749- 1760.
doi: 10.1038/sj.emboj.7601623 |
|
Seong K Y, Zhao X, Xu J R, et al. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genetics and Biology, 2008, 45 (4): 389- 399.
doi: 10.1016/j.fgb.2007.09.002 |
|
Su W, Ma H, Liu C, et al. Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Molecular Biology Reports, 2006, 33 (4): 273- 278.
doi: 10.1007/s11033-006-9011-0 |
|
Torres M A, Dangl J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 2005, 8, 397- 403.
doi: 10.1016/j.pbi.2005.05.014 |
|
Veneault-Fourrey C, Barooah M, Egan M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 2006, 312 (5773): 580- 583.
doi: 10.1126/science.1124550 |
|
Wang Q, An B, Hou X, et al. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Frontiers in Microbiology, 2018, 8, 2621.
doi: 10.3389/fmicb.2017.02621 |
|
Zhang S, Guo Y, Li S, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree. BMC Genetics, 2019, 20 (1): 1- 9.
doi: 10.1186/s12863-018-0706-8 |
|
Zhang S, Guo Y, Li S, et al. 2022. Histone acetyltransferase CfGcn5-mediated autophagy governs the pathogenicity of Colletotrichum fructicola. mBio, e01956-22. | |
Zhou D, Xie M, Bai N, et al. 2020. The autophagy-related gene Aolatg4 regulates hyphal growth, sporulation, autophagosome formation, and pathogenicity in Arthrobotrys oligospora. Frontiers in Microbiology, 11: 592524. |
[1] | Xiansheng Geng,Jinping Shu,Ying Liu,Jun Liu. Isolation and Identification of the Pathogen Causing Canker Disease of Toona sinensis in Zhejiang Province [J]. Scientia Silvae Sinicae, 2024, 60(5): 151-157. |
[2] | Lingling Li,Yuanye Zhu,Shengpei Zhang,He Li. Identification of the Compound Pathogens Causing Anthracnose of Camellia oleifera and Evaluation of Fungicides in Laboratory [J]. Scientia Silvae Sinicae, 2023, 59(5): 100-108. |
[3] | Shouke Zhang,Zikun Li,Hao Yin,Wei Zhang,Jinping Shu,Haojie Wang,Xudong Zhou,Yangdong Wang. Effects of Saponin Content in Camellia oleifera Resistant Clones on the Gut Microbiome Structure of the Seed Pest Curculio chinensis (Coleoptera: Curculionidae) [J]. Scientia Silvae Sinicae, 2022, 58(7): 120-127. |
[4] | Yanmin Li,Deyi Yuan,Tianwen Ye,Ya Chen,Chunxia Han,Shixin Xiao. Karyotype Analysis of 18 Excellent Individuals in F1 Generation of Interspecific Hybridization of Oil-Tea (Camellia oleifera) [J]. Scientia Silvae Sinicae, 2022, 58(4): 165-174. |
[5] | Zhiyang Li,Xiaolin Chen,Lili Li,Shiping Xu,Yuanhao He. Transcriptome Analysis of Camellia olefolia Root and the Endophytic Bacteria Bacillus Subtilis at the Early Stage of Their Interaction [J]. Scientia Silvae Sinicae, 2022, 58(3): 48-58. |
[6] | Yongzhong Chen,Caixia Liu,Yanming Xu,Zhen Zhang,Yinghe Peng,Longsheng Chen,Yirong Su,Rui Wang,Wei Tang. Effects of Herbage Inter-Planting on Structure and Stability of Soil Microbial Community in Camellia oleifera Plantations [J]. Scientia Silvae Sinicae, 2022, 58(11): 61-70. |
[7] | Xingzhou Chen,Guoying Zhou,Xinggang Chen,Lingyu Jiang,Anhua Bao,Jun Liu. Screening of Effectors of Colletotrichum fructicola in Camellia oleifera [J]. Scientia Silvae Sinicae, 2021, 57(9): 110-120. |
[8] | Xueyan Li,Dianguang Xiong,Chengming Tian. Functional Analysis of the Exocyst Subunit CcExo70 in Cytospora chrysosperma [J]. Scientia Silvae Sinicae, 2021, 57(8): 82-93. |
[9] | Xiya Li,Shengpei Zhang,He Li. Function of Vacuolar Protein Sorting CfVps26 in Colletotrichum fructicola on Camellia oleifera [J]. Scientia Silvae Sinicae, 2021, 57(8): 94-101. |
[10] | Baicheng Xie,Lingyao Guo,Dongsheng Du,Yan Tan,Guodong Wang. Responses of Camellia oleifera Yield to Heat Accumulation Temperature and High Temperature Days in Key Growth Period [J]. Scientia Silvae Sinicae, 2021, 57(5): 34-42. |
[11] | Yalan Gao,Yuanhao He,He Li. Biological Function bZIP-Type Transcription Factor CfAp1 in Colletotrichum fructicola [J]. Scientia Silvae Sinicae, 2020, 56(9): 30-39. |
[12] | Lihua Zhu,Xinyue Zhang,Xinrui Xia,Yu Wan,Shanjun Dai,Jianren Ye. Pathogenicity of Aseptic Bursaphelenchus xylophilus on Pinus massoniana [J]. Scientia Silvae Sinicae, 2020, 56(7): 63-69. |
[13] | Shouke Zhang,Linxin Fang,Yi Wang,Wei Zhang,Jinping Shu,Yangdong Wang,Haojie Wang. Evaluation Model for Resistance of Camellia oleifera to Curculio chinensis (Coleoptera: Curculionidae) Based on Fruit Properties [J]. Scientia Silvae Sinicae, 2020, 56(12): 67-74. |
[14] | Yefan Cao,Laifa Wang,Xizhuo Wang,Jiehong Fan. Pathogenicity of Bursaphelenchus xylophilus to Larix olgensis Seedlings [J]. Scientia Silvae Sinicae, 2020, 56(11): 108-115. |
[15] | Li He, Li Sizheng, Wang Yuechen, Liu Jun, Xu Jianping, Zhou Guoying. Identification of the Pathogens Causing Anthracnose of Camellia oleifera in Nursery and Their Resistence to Fungicides [J]. Scientia Silvae Sinicae, 2019, 55(5): 85-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||