目的: 为提高树种识别工作的效率和准确率,提出一种利用迁移学习策略并引入SimAM注意力机制和ECA通道注意力机制的ConvNeXt树种识别模型。方法: 以12种常见树种的树皮图像为研究对象,通过传统数据增强方法对数据进行扩充,防止模型过拟合。使用SimAM和ECA通道注意力机制构建以ConvNeXt为基础的改进网络,增强特征提取的SA-ConvNeXt、增强重要特征权重的E-ConvNeXt、结合两者的ES-ConvNeXt,测试数据集在增强前后对ES-ConvNeXt网络准确率的影响。使用ResNet34、ResNet50、GoogLeNet、Swin Transformer、DenseNet121和ConvNeXt网络,与ES-ConvNeXt模型识别效果进行比较。结果: SA-ConvNeXt和E-ConvNeXt准确率分别达到(95.14±0.42)%、(96.085±0.235)%,ES-ConvNeXt在增强后数据集测试的准确率达到(97.445±0.635)%,对单一树种识别准确率均超过93%,最高类别准确率达到99.79%,为最优方案。经数据增强后进行训练的模型与使用原始数据进行训练的模型相比,其验证集的准确率和损失值,无论是收敛速度还是最终稳定值都是最优。数据集相同时,使用ResNet34、ResNet50、GoogLeNet、Swin Transformer、DenseNet121和ConvNeXt网络的识别准确率,分别为92.74%、94.47%、90.52%、92.85%、70.38%、94.72%,均低于新改进模型ES-ConvNeXt(97.81%),进一步说明了改进后的ES-ConvNeXt模型的有效性。结论: 数据增强对模型准确率提升有效,在数据增强后的数据集上,改进后的ES-ConvNeXt模型与其他模型相比可以更加准确地完成树种分类任务,在不同树种上也有较好的泛化能力。
目的: 针对虫情测报灯采集到的林区害虫样本种类多、尺寸复杂及密集遮挡问题,提出了一种多尺度序列特征融合检测算法(MPD-YOLO),用于提升林区害虫检测的精确度,为林区害虫监测和防护提供了新的技术路径。方法: 首先,以采集于北京、河北、山西等地的林区害虫图像为基础,构建包含18类林区害虫的数据集。数据集涵盖不同场景下的害虫图像,为算法的训练与测试提供了可靠的数据支撑。其次,为提高小目标害虫的检测效果,利用3D卷积对小目标进行更为深入的尺度序列特征提取,MPD-YOLO方法引入尺度序列特征融合模块(SSFF),有效提升模型对小目标的感知能力。最后,为解决密集遮挡和多尺度害虫并存情况下的模型检测能力,MPD-YOLO方法提出了三重特征编码高效聚合模块(TFE-ELAN),通过将不同尺寸特征图进行特征融合,增强多层特征图之间信息的关联性,提升了模型的检测性能。结果: 在相同试验条件下,本研究在构建的数据集上对MPD-YOLO进行大量试验,并与主流的目标检测算法(YOLO系列、Faster-CNN等)进行对比分析。MPD-YOLO方法具有最佳的害虫识别精度,其F1-score和mAP分别达到88.43%和91.92%,比次优方法YOLOv8x分别高1.45%和1.22%。相比于原网络模型YOLOv7,MPD-YOLO的F1-score与mAP分别比YOLOv7高0.72%和2.8%,证明了本文所提方法在处理复杂目标检测任务中的优势。此外,本研究中消融试验,分析了尺度序列特征融合模块和三重特征编码高效聚合模块对整体性能的贡献,验证了各模块设计的有效性。结论: 本文提出的MPD-YOLO算法,有效提升了复杂环境下多尺度害虫的检测性能,在处理复杂环境下的检测任务时表现出较高的鲁棒性。
目的: 通过大量音频-文本对构建的鸟类音频预训练模型能基于物种类别辅助信息对缺乏训练样本的音频进行零样本分类,以减轻数据采集的负担,为鸟类音频零样本分类研究提供有效的理论依据,也为开放环境中的生态监测和物种分布变化分析提供参考。方法: 利用反映鸟类系统发育关系的系统分类学信息作为声音类的物种类别辅助信息,以预训练的RoBERTa文本编码器和HTSAT音频编码器分别提取系统分类学信息的语义嵌入和鸟类音频的声学嵌入,通过对比学习方法计算语义嵌入和声学嵌入的相似度,构建鸟类对比语言-音频预训练模型(CLAP-Bird),然后基于零样本类的物种类别辅助信息和CLAP-Bird模型实现零样本分类。结果: 在一个包含725 h的大型不平衡鸟类音频数据集上训练和评估了所提出的方法,在5个不同的8~10个类别的测试集上获得的平均F1_score为0.289,与以鸟类学名、鸟类生活史和基础特性信息作为物种类别辅助信息的基线模型相比,本文提出的模型对鸟类音频零样本分类性能明显提升。结论: 鸟类的系统分类学信息作为物种类别辅助信息,提供了关于鸟类的生物学遗传信息,有助于模型更好地理解鸟类鸣声之间的关系,提升了鸟类音频零样本学习的性能。且训练集与测试集的系统分类学关系越接近,则对测试集的零样本分类性能越好。
(月刊 1955年创刊) 主管:中国科学技术协会 主办:中国林学会 出版:《林业科学》编辑部 主编:尹伟伦 国内统一刊号:CN 11-1908/S 国际标准刊号:ISSN 1001-7488 国内邮发代号:82-6