陈日强, 李长春, 杨贵军, 等. 2020. 无人机机载激光雷达提取果树单木树冠信息. 农业工程学报, 36(22): 50-59. Chen R Q, Li C C, Yang G J, et al. 2020. UAV airborne LiDAR extraction of single-tree canopy information for fruit trees. Transactions of the Chinese Society of Agricultural Engineering, 36(22): 50-59. [in Chinese] 管昉立, 徐爱俊. 2018. 基于智能手机与机器视觉技术的立木胸径测量方法. 浙江农林大学学报, 35(5): 892-899. Guan F L, Xu A J. 2018. Measurement method of standing tree diameter at breast height based on smartphone and machine vision technology. Journal of Zhejiang A&F University, 35(5): 892-899.[inChinese] 李美琪, 刘美玲, 王 璇, 等. 2024. 八角林病虫害遥感识别模型. 林业科学, 60(11): 128-138. Li M Q, Liu M L, Wang X, et al. 2024. Remote sensing identification model for diseases and pests in star anise forests. Scientia Silvae Sinicae, 60(11): 128-138. [in Chinese] 潘 玺, 李 康, 杨 忠. 2024. 基于卷积神经网络的近红外光谱与数字图像特征信息融合木材树种识别. 林业科学, 60(12): 136-145. Pan X, Li K, Yang Z. 2024. Fusion of near-infrared spectral and digital image feature information based on convolutional neural network for wood species recognition. Scientia Silvae Sinicae, 60(12): 136-145.[in Chinese] 田智康, 葛浙东, 郑焕琪, 等. 2024. 基于深度学习的75种阔叶材微观辨识方法. 林业科学, 60(10): 94-103. Tian Z K, Ge Z D, Zheng H Q, et al. 2024. A deep learning-based method for the microscopic identification of 75 broadleaf species. Scientia Silvae Sinicae, 60(10): 94-103. [in Chinese] Afify H M, Mohammed K K, Hassanien A E. 2021. An improved framework for polyp image segmentation based on SEGNET architecture. International Journal of Imaging Systems and Technology, 31(3): 1741-1751. Al-lQubaydhi N, Alenezi A, Alanazi T, et al. 2024. Deep learning for unmanned aerial vehicles detection: a review. Computer Science Review, 51: 100614. Badrinarayanan V, Kendall A, Cipolla R. 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. Cao L J, Zheng X Y, Fang L M. 2023. The semantic segmentation of standing tree images based on the YoloV7 deep learning algorithm. Electronics, 12(4): 929. Cui Z Y, Wang X Y, Liu N Y, et al. 2020. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 379-391. Du X C, Feng H L, Hu M Y, et al. 2018. Three-dimensional stress wave imaging of wood internal defects using TKriging method. Computers and Electronics in Agriculture, 148: 63-71. Du X C, Zheng Y L, Feng H L. 2024a. Stress wave hybrid imaging for detecting wood internal defects under sparse signals. Forests, 15(7): 1139. Du X C, Zheng Y L, Feng H L. 2024b. Optimizing sensor positions in the stress wave tomography of internal defects in hardwood. Forests, 15(3): 465. Faghihi A, Fathollahi M, Rajabi R. 2023. Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models. Multimedia Tools and Applications, 83(19): 57495-57510. García-Hidalgo M, García-Pedrero Á, Rozas V, et al. 2024. Tree ring segmentation using UNEt TRansformer neural network on stained microsections for quantitative wood anatomy. Frontiers in Plant Science, 14: 1327163. Guo S J, Zhao Z X, Guo L Y, et al. 2023. A Method for measuring the absolute position and attitude parameters of a moving rigid body using a monocular camera. Applied Sciences, 13(21): 11863. Hong Y, Liu S J, Li Z P, et al. 2024. Airborne single-photon LiDAR towards a small-sized and low-power payload. Optica, 11(5): 612-618. Hui Z Y, Lin L, Jin S G, et al. 2024. A reliable DBH estimation method using terrestrial LiDAR points through polar coordinate transformation and progressive outlier removal. Forests, 15(6): 1031. Kumar S, Furuhashi H. 2017. Long-range measurement system using ultrasonic range sensor with high-power transmitter array in air. Ultrasonics, 74: 186-195. Li G H, Weng X, Du X C, et al. 2016. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis. Computers and Electronics in Agriculture, 124: 23-28. Liu Y Y, Bai X T, Wang J F, et al. 2024. Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism. Engineering Applications of Artificial Intelligence, 127: 107260. Niu Z Y, Zhong G Q, Yu H. 2021. A review on the attention mechanism of deep learning. Neurocomputing, 452: 48-62. Ouyang D, He S, Zhang G Z, et al. 2023. Efficient multi-scale attention module with cross-spatial learning. ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1-5. Pan X R, Ge C J, Lu R, et al. 2022. On the integration of self-attention and convolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 815-825. Qiao Y C, Hu Y H, Zheng Z Z, et al. 2022. A diameter measurement method of red jujubes trunk based on improved PSPNet. Agriculture, 12(8): 1140. Shi L J, Wang G Y, Mo L F, et al. 2022. Automatic segmentation of standing trees from forest images based on deep learning. Sensors, 22(17): 6663. Siddique N, Paheding S, Elkin C P, et al. 2021. U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access, 9: 82031-82057. Tang H H, Li X B, Meng L, et al. 2024. Process modeling and optimization in laser drilling of bulk metallic glasses based on GABPNN and machine vision. Optics & Laser Technology, 172: 110502. Van Dyk D A, Meng X L. 2001. The art of data augmentation. Journal of Computational and Graphical Statistics, 10(1): 1-50. Wan D H, Lu R S, Shen S Y, et al. 2023. Mixed local channel attention for object detection. Engineering Applications of Artificial Intelligence, 123: 106442. Wang S, Li R, Li H, et al. 2023. An automated method for stem diameter measurement based on laser module and deep learning. Plant Methods, 19(1): 68. Williams C, Falck F, Deligiannidis G, et al. 2023. A unified framework for U-Net design and analysis. Advances in Neural Information Processing Systems, 36: 27745-27782. Woo S, Park J, Lee J Y, et al. 2018. Cbam: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV), 3-19. Yan L F, Liu D W, Xiang Q, et al. 2021. PSP net-based automatic segmentation network model for prostate magnetic resonance imaging. Computer Methods and Programs in Biomedicine, 207: 106211. Yu B, Yang L, Chen F. 2018. Semantic segmentation for high spatial resolution remote sensing images based on convolution neural network and pyramid pooling module. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9): 3252-3261. Zhang J H, Gong J L, Zhang Y F, et al. 2023. Weed Identification in maize fields based on improved Swin-UNet. Agronomy, 13(7): 1846. Zhu H Y, Gowen A, Feng H L, et al. 2020. Deep spectral-spatial features of near infrared hyperspectral images for pixel-wise classification of food products. Sensors, 20(18): 5322.
|