|
郝德君, 王 焱, 戴华国, 等. 中国人工林害虫生态治理策略及技术展望. 东北林业大学学报, 2004, 48 (6): 84- 86.
doi: 10.3969/j.issn.1000-5382.2004.06.027
|
|
Hao D J, Wang Y, Dai H G, et al. Strategy for ecological management of pests in plantations and prospect for control techniques. Journal of Northeast Forestry University, 2004, 48 (6): 84- 86.
doi: 10.3969/j.issn.1000-5382.2004.06.027
|
|
候瑞环, 杨喜旺, 王智超, 等. 一种基于YOLOv4-TIA的林业害虫实时检测方法. 计算机工程, 2022, 48 (4): 255- 261.
|
|
Hou R H, Yang X W, Wang Z C, et al. A real-time detection method for forestry pests based on YOLOv4—TIA. Computer Engineering, 2022, 48 (4): 255- 261.
|
|
康江燕. 2023. 东北地区蜉金龟资源调查与几何形态学物种鉴定. 沈阳: 沈阳农业大学.
|
|
Kang J Y. 2023. Resource investigation and identification of geometric morphology species of the Aphodiinae in Northeast China. Shenyang Agricultural University, Shenyang. [in Chinese]
|
|
梁国政. 2010. 基于昆虫形状特征的模式识别. 北京: 北京邮电大学.
|
|
Liang G Z. 2010. Pattern recognition based on shape feature of insects. Beijing University of Posts and Telecommunications, Beijing. [in Chinese]
|
|
林达坤, 黄世国, 张飞萍, 等. 基于改进差分进化算法的鳞翅目昆虫图像识别方法. 林业科学, 2020, 56 (3): 73- 81.
doi: 10.11707/j.1001-7488.20200308
|
|
Lin D K, Huang S G, Zhang F P, et al. Method of image recognition for lepidopteran insects based on improved differential evolution algorithm. Scientia Silvae Sinicae, 2020, 56 (3): 73- 81.
doi: 10.11707/j.1001-7488.20200308
|
|
孙丽萍, 谭少亨, 周宏威, 等. 基于YOLOv5的林业有害生物检测与识别. 森林工程, 2022, 38 (5): 104- 109+120.
doi: 10.3969/j.issn.1006-8023.2022.05.013
|
|
Sun L P, Tan S H, Zhou H W, et al. Forestry pests detection and identification based on YOLOv5. Forest Engineering, 2022, 38 (5): 104- 109+120.
doi: 10.3969/j.issn.1006-8023.2022.05.013
|
|
武 珊. 融合聚类算法与YOLO—v3网络在果蔬种植防害虫中的应用研究. 江西农业学报, 2022, 34 (10): 108- 115.
|
|
Wu S. Application of clustering algorithm and YOLO—v3 network in pest control of fruit and vegetable planting. Acta Agriculturae Jiangxi, 2022, 34 (10): 108- 115.
|
|
杨忠岐. 我国重大林木害虫生物防治研究进展(一). 林业科技通讯, 2018, 61 (4): 40- 43.
|
|
Yang Z Q. Research progress on biological control of major forest pests in China (1). Forest Science and Technology, 2018, 61 (4): 40- 43.
|
|
袁哲明, 袁鸿杰, 言雨璇, 等. 2021. 基于深度学习的轻量化田间昆虫识别及分类模型. 吉林大学学报(工学版), 51(3): 1131−1139.
|
|
Yuan Z M, Yuan H J, Yan Y X, et al. , 2021. Automatic recognition and classification of field insects based onlightweight deep learning model. Journal of Jilin University(Engineering and Technology Edition), 51(3): 1131−1139. [in Chinese]
|
|
赵汗青, 沈佐锐, 于新文. 数学形态学在昆虫分类学上的应用研究. Ⅰ. 在目级阶元上的应用研究. 昆虫学报, 2003, 54 (1): 45- 50.
doi: 10.3321/j.issn:0454-6296.2003.01.009
|
|
Zhao H Q, Shen Z R, Yu X W. Use of math-morphological features in insect taxonomy. Ⅰ. At the order level. Acta Entomologica Sinica, 2003, 54 (1): 45- 50.
doi: 10.3321/j.issn:0454-6296.2003.01.009
|
|
Ashaghathra S M, Weckler P, Solie J, et al. Identifying pecan weevils through wimage processing techniques based on template matching. 2007 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2007,
|
|
Bochkovskiy A, Wang C-Y, Liao H-Y M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv, 2004.10934.
|
|
Chen J W, Lin W J, Cheng H-J, et al. A smartphone-based application for scale pest detection using multiple-object detection methods. Electronics, 2021, 10 (4): 372.
doi: 10.3390/electronics10040372
|
|
Girshick R. 2015. Fast r-cnn. Proceedings of the IEEE international conference on computer vision, 1440−1448.
|
|
Girshick R, Donahue J, Darrell T, et al. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 580−587.
|
|
Kang M, Ting C M, Ting F F, et al. ASF-YOLO: A novel YOLO model with attentional scale sequence fusion for cell instance segmentation. Image and Vision Computing, 2024, 147, 105057.
doi: 10.1016/j.imavis.2024.105057
|
|
Larios N, Soran B, Shapiro L G, et al. 2010. Haar random forest features and SVM spatial matching kernel for stonefly species identification. 2010 20th International Conference on Pattern Recognition, 2624-2627.
|
|
Li W, Zhu T, Li X, et al. Recommending advanced deep learning models for efficient insect pest detection. Agriculture, 2022, 12 (7): 1065.
doi: 10.3390/agriculture12071065
|
|
Liang J, Tian M, Liu X. Rapid detection of multi‐scale cotton pests based on lightweight GBW‐YOLOv5 model. Pest Management Science, 2024, 80 (6): 2738- 2750.
doi: 10.1002/ps.7978
|
|
Liu W, Anguelov D, Erhan D, et al. 2016. Ssd: Single shot multibox detector. Computer Vision–ECCV 2016, 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer: 21−37.
|
|
Martineau C, Conte D, Raveaux R, et al. A survey on image-based insect classification. Pattern Recognition, 2017, 65, 273- 284.
doi: 10.1016/j.patcog.2016.12.020
|
|
Redmon J, Divvala S, Girshick R, et al. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.
|
|
Ren S, He K, Girshick R, et al. Faster R—CNN: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 2016, 39 (6): 1137- 1149.
|
|
Rukundo O, Cao H. 2012. Nearest neighbor value interpolation. arXiv preprint arXiv, 1211.1768.
|
|
Shen Y, Zhou H, Li J, et al. Detection of stored—grain insects using deep learning. Computers and Electronics in Agriculture, 2018, 145, 319- 325.
doi: 10.1016/j.compag.2017.11.039
|
|
Tan S, Hu S, He S, et al. Leveraging hyperspectral images for accurate insect classification with a novel Two-Branch Self-Correlation approach. Agronomy, 2024, 14 (4): 863.
doi: 10.3390/agronomy14040863
|
|
Teixeira, Ana Cláudia, Ribeiro J, et al. A systematic review on automatic insect detection using deep learning. Agriculture, 2023, 13 (3): 713.
doi: 10.3390/agriculture13030713
|
|
Tong K, Wu Y. Deep learning-based detection from the perspective of small or tiny objects: A survey. Image and Vision Computing, 2022, 123, 104471.
doi: 10.1016/j.imavis.2022.104471
|
|
Tran D, Bourdev L, Fergus R, et al. 2015. Learning spatiotemporal features with 3d convolutional networks. Proceedings of the IEEE international conference on computer vision: 4489−4497.
|
|
Wang C Y, Bochkovskiy A, Liao H Y M. 2023. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 7464−7475.
|
|
Ye R, Gao Q, Qian Y, et al. Improved Yolov8 and Sahi model for the collaborative detection of small targets at the micro scale: A case study of pest detection in Tea. Agronomy, 2024, 14 (5): 1034.
doi: 10.3390/agronomy14051034
|