程浙安. 2019. 基于深度卷积神经网络的内蒙古地区陆生野生动物自动识别. 北京: 北京林业大学. Cheng Z A. 2019. Automatic recognition of terrestrial wildlife in inner mongolia based on deep convolution neural network. Beijing: Beijing Foresty University. [in Chinese] 宫一男, 谭孟雨, 王 震, 等. 2019. 基于深度学习的红外相机动物影像人工智能识别: 以东北虎豹国家公园为例. 兽类学报, 39(4): 458-465. Gong Y N, Tan M Y, Wang Z, et al. 2019. Al recognition of infrared camera image of wild animals based on deep learning: Northeast Tiger and Leopard National Park for example. Acta Theriologoca Sinica, 39(4): 458-465. [in Chinese] 李安琪. 2020. 基于卷积神经网络的野生动物监测图像自动识别方法研究. 北京: 北京林业大学. Li A Q. 2020. Research on automatic recognition method of wildlife monitoring images based on convolutional neural network. Beijing: Beijing Forestry University. [in Chinese] 齐建东, 马鐘添, 张德怀, 等. 2023. 基于BS-ResNeXt-50的密云地区野生动物图像识别. 林业科学, 59(8): 112-122. Qi J D, Ma Z T, Zhang D H, et al. 2023. Wildlife image recognition in Miyun District based on BS-ResNeXt-50. Scientia Silvae Sinicae, 59(8): 112-122. [in Chinese] 肖治术, 肖文宏, 王天明, 等. 2022. 中国野生动物红外相机监测与研究: 现状及未来. 生物多样性, 30(10): 234-259. Xiao Z S, Xiao W H, Wang T M, et al. 2022. Wildlife monitoring and research using camera-trapping technology across China: the current status and future issues. Biodiversity Science, 30(10): 234-259. [in Chinese] 张长春, 李大方, 张军国. 2024. 基于Wasserstein距离和相关对齐迁移学习的野生动物图像识别方法. 林业科学, 60(8): 25-32. Zhang C C, Li D F, Zhang J G. 2024. Wildlife images recognition method based on Wasserstein distance and correlation alignment transfer learning. Scientia Silvae Sinicae, 60(8): 25-32. [in Chinese] 张军国, 程浙安, 胡春鹤, 等. 2018. 野生动物监测光照自适应Retinex图像增强算法. 农业工程学报, 34(15): 183-189. Zhang J G, Cheng Z A, Hu C H, et al. 2018. Adaptive image enhancement algorithm for wild animal monitoring based on Retinex theory. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 34(15): 183-189. [in Chinese] Ahn S, Kim S, Jeong D. 2023. Unsupervised domain adaptation for mitigating sensor variability and interspecies heterogeneity in animal activity recognition. Animals, 13(20): 3276. Bakana S, Zhang Y, Twala B. 2024. WildARe-YOLO: a lightweight and efficient wild animal recognition model. Ecological Informatics, 80: 102541. Bohdal O, Li D, Hu S, et al. 2024. Feed-forward latent domain adaptation. IEEE Winter Conference on Applications of Computer Vision, 8490-8499. Chen X, Wang S, Long M, et al. 2019. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. International Conference on Machine Learning, 1081-1090. He K, Zhang X, Ren S, et al. 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770-778. Henrich M, Burgueño M, Hoyer J, et al. 2024. A semi-automated camera trap distance sampling approach for population density estimation. Remote Sensing in Ecology and Conservation, 10(2): 156-171. Ganin Y, Ustinova E, Ajakan H, et al. 2016. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(1): 2096-2030. Long M, Cao Z, Wang J, et al. 2018. Conditional adversarial domain adaptation. Advances in Neural Information Processing Systems, 31: 1640-1650. Ma Z, Dong Y, Xia Y, et al. 2024. Wildlife real-time detection in complex forest scenes based on YOLOv5s deep learning network. Remote Sensing, 16(8): 1350. Na J, Jung H, Chang H J, et al. 2021. Fixbi: Bridging domain spaces for unsupervised domain adaptation. IEEE Conference on Computer Vision and Pattern Recognition, 1094-1103. Peng X, Bai Q, Xia X, et al. 2019. Moment matching for multi-source domain adaptation. IEEE International Conference on Computer Vision, 1406-1415. Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, 1-14. Sun B, Saenko K. 2016. Deep coral: correlation alignment for deep domain adaptation. European Conference on Computer Vision, 443-450. Tabak M, Norouzzadeh M, Wolfson D, et al. 2019. Machine learning to classify animal species in camera trap images: applications in ecology. Methods in Ecology and Evolution, 10: 585-590. Whytock R, Świeżewski J, Zwerts J, et al. 2021. Robust ecological analysis of camera trap data labelled by a machine learning model. Methods in Ecology and Evolution, 12(6): 1080-1092. Yousif H, Kays R, He Z. 2019. Dynamic programming selection of object proposals for sequence-level animal species classification in the wild. IEEE Transactions on Circuits and Systems for Video Technology, 20. Zhang C C, Zhang J G. 2023. DJAN: Deep joint adaptation network for wildlife image recognition. Animals, 13(21): 3333. Zhou L H, Ye M, Li X P, et al. 2024. Disentanglement then reconstruction: Unsupervised domain adaptation by twice distribution alignments. Expert Systems with Applications, 237: 121498.
|