林业科学 ›› 2025, Vol. 61 ›› Issue (5): 85-97.doi: 10.11707/j.1001-7488.LYKX20230619
王亚飞(),刘洋,王凯,丁晓菲,续可心,贾黎明*(
),席本野
收稿日期:
2023-12-15
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
贾黎明
E-mail:mrw1996@bjfu.edu.cn;jlm@bjfu.edu.cn
基金资助:
Yafei Wang(),Yang Liu,Kai Wang,Xiaofei Ding,Kexin Xu,Liming Jia*(
),Benye Xi
Received:
2023-12-15
Online:
2025-05-20
Published:
2025-05-24
Contact:
Liming Jia
E-mail:mrw1996@bjfu.edu.cn;jlm@bjfu.edu.cn
摘要:
目的: 明确毛白杨纸浆材培育末期的最佳灌溉施肥策略,为不同时期水肥管理提供依据,也为解决长期灌溉施氮造成水资源浪费和土壤酸化等问题提供参考。方法: 以华北平原沙地的三倍体毛白杨为研究对象,采用增广试验设计滴灌水氮耦合试验,设置3 种灌水处理(W20、W33、W45)和 4种施氮水平(N0、NL、NM、NH),研究第5个生长季内(4—10月)各水氮处理的叶面积指数(LAI)、土壤体积含水率(SVWC)的时空动态变化以及生长季末林木生长、林地土壤养分特征。结果: 1) 培育末期,经过4年滴灌水氮耦合培育,不同水氮条件下林木生长、林地蓄积和林地生产力无显著差异。2) 滴灌水氮耦合并未改变整个生长季LAI的变化趋势,受风灾(6月1日发生)影响,LAI总体呈双峰状,分别在5月30日和7月15日前后达到峰值。3) 春季(5月)W20处理主要增加根区土壤表层(0~50 cm)水分,W33和W45处理则主要增加100~180 cm深度土壤水分;夏季(7月)灌溉能够增加0~180 cm深度土壤体积含水率,且W20处理对土壤水分的补充优于W33和W45处理;秋季(10月)停灌后,在W20和W33处理下深层土壤水分得到补充,而秋季的表层土壤相比春、夏季变得更为干燥。4) 毛白杨林地土壤养分主要积累在浅土层(0~40 cm土层),浅土层土壤有机质和全氮含量对水氮耦合的响应弱于有效磷,其中灌溉对有效磷的积累作用大于施肥;且在水分充足的条件下(W20和W33灌溉下),施氮量的增加将抑制土壤磷含量的积累。5) 土壤速效磷含量与林木胸径之间具有显著正相关,滴灌水氮耦合措施可调控土壤磷含量,进而影响林木生长。结论: 连续4年滴灌水氮耦合对毛白杨纸浆材培育末期林木生长及林地生产力无显著促进作用,且在灌水较多的水平下(W20和W33),高水平施氮(NM和NH)可能降低土壤有效磷积累,抑制林木生长。综合考虑经济成本和生态安全,在相近立地条件下,短轮伐期毛白杨纸浆材培育第5年停止施肥,保持充分灌溉(土壤水势?20 kPa时灌溉),土壤水分和养分维持在较高水平,实现地力可持续。
中图分类号:
王亚飞,刘洋,王凯,丁晓菲,续可心,贾黎明,席本野. 水氮耦合处理对毛白杨纸浆林生长及土壤水养特征影响[J]. 林业科学, 2025, 61(5): 85-97.
Yafei Wang,Yang Liu,Kai Wang,Xiaofei Ding,Kexin Xu,Liming Jia,Benye Xi. Effects of Water-nitrogen Coupling Treatment on Growth of Populus tomentosa Pulp Forest and the Soil Moisture-nutrient Characteristics[J]. Scientia Silvae Sinicae, 2025, 61(5): 85-97.
表1
2020年生长季末毛白杨不同水氮处理下林木生长及生产力①"
试验处理 Treatment | 平均胸径 Average diameter at breast height (DBH)/cm | 平均树高 Average tree height (H)/m | 单株材积Single tree volume | 林地蓄积量 Forest stand volume/(m3·hm?2) | 林地生产力 Annual forest productivity/ (m3·hm?2a?1) |
Va /(m3·tree?1) | |||||
W20NL | 12.80±0.32 | 14.47±0.35 | 0.075±0.003 | 124.21±5.39 | 24.84±1.08 |
W20NM | 12.82±0.53 | 15.09±0.48 | 0.079±0.009 | 132.50±15.83 | 26.50±3.17 |
W20NH | 12.39±0.56 | 14.04±0.70 | 0.070±0.011 | 116.02±18.44 | 23.20±3.69 |
W20N0 | 12.75±0.24 | 14.54±0.21 | 0.075±0.002 | 125.22±3.46 | 25.04±0.69 |
W33NL | 11.94±0.20 | 14.18±0.61 | 0.065±0.003 | 107.53±5.63 | 21.51±1.13 |
W33NM | 11.80±0.55 | 13.99±0.56 | 0.065±0.010 | 108.03±16.66 | 21.61±3.33 |
W33NH | 12.39±0.48 | 14.04±0.64 | 0.069±0.007 | 114.43±12.25 | 22.89±2.45 |
W33N0 | 12.66±0.20 | 14.52±0.45 | 0.076±0.004 | 126.79±7.01 | 25.36±1.40 |
W45NL | 12.30±0.29 | 14.52±0.31 | 0.072±0.006 | 120.23±9.20 | 24.05±1.84 |
W45NM | 11.77±0.68 | 13.94±0.99 | 0.062±0.011 | 104.16±17.95 | 20.83±3.59 |
W45NH | 11.99±0.38 | 13.96±0.60 | 0.066±0.008 | 110.79±12.74 | 22.16±2.55 |
W45N0 | 12.20±0.71 | 13.78±0.59 | 0.062±0.006 | 103.56±9.95 | 20.71±1.99 |
CK | 12.35±0.44 | 14.85±0.23 | 0.071±0.005 | 119.06±8.50 | 23.81±1.70 |
表2
2020年生长季内不同水氮处理下毛白杨叶面积指数方差分析①"
变异来源 Source of variation | 自由度 df | P值(P-value) | ||||||||||
05?15 | 05?30 | 06?15 | 06?30 | 07?15 | 07?30 | 08?15 | 08?30 | 09?15 | 09?30 | 10?15 | ||
WN vs.CK | 12 | 0.773 | 0.132 | 0.185 | 0.569 | 0.378 | 0.975 | 0.189 | 0.092 | 0.126 | 0.713 | 0.856 |
W | 2 | 0.136 | 0.340 | 0.796 | 0.451 | 0.634 | 0.777 | 0.206 | 0.060 | 0.019 | 0.153 | 0.475 |
N | 3 | 0.823 | 0.249 | 0.361 | 0.679 | 0.990 | 0.864 | 0.066 | 0.361 | 0.860 | 0.844 | 0.543 |
W×N | 6 | 0.829 | 0.249 | 0.166 | 0.606 | 0.097 | 0.915 | 0.637 | 0.226 | 0.234 | 0.758 | 0.833 |
表3
2020年4种灌溉梯度下土壤体积含水率方差分析①"
变异来源 Source of variation | 自由度 df | P值(P-value) | ||||
05?30 | 06?30 | 07?30 | 08?30 | 10?15 | ||
W | 2 | <0.001 | <0.001 | <0.001 | 0.001 | 0.005 |
D | 9 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 2 | 0.047 | 0.162 | 0.113 | 0.327 | 0.586 |
W×D | 18 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 |
W×F | 4 | <0.001 | 0.440 | 0.555 | 0.609 | 0.557 |
D×F | 18 | 0.662 | 0.771 | 0.138 | 0.885 | 0.937 |
W×D×F | 36 | 0.907 | 0.999 | 0.983 | 0.964 | 0.978 |
M | 4 | <0.001 | ||||
W | 2 | <0.001 | ||||
W×M | 8 | 0.159 |
表5
不同水氮处理0~80 cm土壤养分情况①"
灌溉处理 Irrigation treatment | 施肥处理 Fertilization treatment | 有机质含量 SOM /(g·kg?1) | 全氮含量 TN /(g·kg?1) | 速效磷含量 AP /(mg·kg?1) |
W20 | NL | 26.89±4.00 | 1.31±0.08 | 3.13±0.03bc |
NM | 24.59±5.44 | 1.24±0.22 | 2.66±0.02c | |
NH | 23.78±4.95 | 1.18±0.21 | 2.77±0.11bc | |
N0 | 26.20±2.27 | 1.29±0.16 | 2.81±0.07bc | |
W33 | NL | 22.26±3.01 | 1.48±0.12 | 3.00±0.20bc |
NM | 23.57±7.48 | 1.19±0.04 | 3.01±0.04bc | |
NH | 25.04±6.46 | 0.94±0.09 | 2.63±0.04c | |
N0 | 21.21±5.80 | 1.24±0.01 | 2.75±0.14bc | |
W45 | NL | 26.10±5.36 | 1.15±0.07 | 3.22±0.13b |
NM | 29.03±6.07 | 1.38±0.17 | 3.10±0.33bc | |
NH | 26.70±5.94 | 1.36±0.13 | 4.08±0.18a | |
N0 | 23.49±4.51 | 1.02±0.11 | 3.12±0.22bc | |
CK | 10.91±1.23 | 1.09±0.10 | 2.82±0.0bc |
图4
不同水氮处理下各土层有机质含量 不同大写字母表示同一处理不同土层间差异显著(P<0.05),不同小写字母表示不同处理同一土层之间差异显著(P<0.05)。 Different capital letters indicate significant differences between different soil layers of the same treatment (P<0.05), and different lowercase letters indicate significant differences between different treatments of the same soil layer (P<0.05)."
鲍士旦. 2000. 土壤农化分析. 第3版. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil and agricultural chemistry analysis. 3rd ed. Beijing: China Agriculture Press. [in Chinese] | |
陈章水. 杨树二元立木材积表的编制. 林业科学研究, 1989, 2 (1): 78- 83. | |
Chen Z S. Compilation of poplar two-dimensional standing wood volume table. Forestry Research, 1989, 2 (1): 78- 83. | |
戴腾飞, 席本野, 闫小莉, 等. 2015. 施肥方式和施氮量对欧美108杨人工林土壤氮素垂向运移的影响. 应用生态学报, 26(6): 1641−1648. | |
Dai T F, Xi B Y, Yan X L, et al. 2015. Effects of fertilization methods and nitrogen application on soil nitrogen vertical transport in European and American 108 poplar plantations. Chinese Journal of Applied Ecology, 26(6): 1641−1648. [in Chinese] | |
董雯怡, 赵 燕, 张志毅, 等. 水肥耦合效应对毛白杨苗木生物量的影响. 应用生态学报, 2010, 21 (9): 2194- 2200. | |
Dong W Y, Zhao Y, Zhang Z Y, et al. Effects of coupling effect of water and fertilizer on the biomass of Populus tomentosa seedlings. Chinese Journal of Applied Ecology, 2010, 21 (9): 2194- 2200. | |
方升佐. 中国杨树人工林培育技术研究进展. 应用生态学报, 2008, 19 (10): 2308- 2316. | |
Fang S Z. Silviculture of poplar plantation in China: a review. Chinese Journal of Applied Ecology, 2008, 19 (10): 2308- 2316. | |
方升佐, 徐锡增, 吕士行, 等. 中短轮伐期杨树纸浆林 LAI 及生物生产力的研究. 应用生态学报, 1998, 9 (3): 225- 230.
doi: 10.3321/j.issn:1001-9332.1998.03.001 |
|
Fang S Z, Xu X Z, Lu S X. Leaf area index and biomass productivity of mid-and short rotation poplar plantations for pulp timber. Chinese Journal of Applied Ecology, 1998, 9 (3): 225- 230.
doi: 10.3321/j.issn:1001-9332.1998.03.001 |
|
傅建平, 兰再平, 孙尚伟, 等. 滴灌条件下杨树人工林土壤水分变化规律研究. 北京林业大学学报, 2013, 35 (6): 61- 66. | |
Fu J P, Lan Z P, Sun S W, et al. Dynamics of soil water content in poplar plantation cultivated with drip irrigation system. Journal of Beijing Forestry University, 2013, 35 (6): 61- 66. | |
贺曰林, 李广德, 席本野, 等. 2年生毛白杨细根生长、分布及形态特征对滴灌水氮耦合的响应. 北京林业大学学报, 2022, 44 (4): 1- 11.
doi: 10.12171/j.1000-1522.20200413 |
|
He Y L, Li G D, Xi B Y, et al. Coupling effects of drip irrigation and nitrogen fertigation on fine root growth, distribution and morphological characters of 2-year-old Populus tomentosa plantations. Journal of Beijing Forestry University, 2022, 44 (4): 1- 11.
doi: 10.12171/j.1000-1522.20200413 |
|
贺曰林, 王 烨, 张宏锦, 等. 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响. 农业工程学报, 2018, 34 (20): 90- 98. | |
He Y L, Wang Y, Zhang H J, et al. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in young Populus tomentosa plantations under surface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (20): 90- 98. | |
贾黎明, 邢长山, 韦艳葵, 等. 地下滴灌条件下杨树速生丰产林生长与光合特性. 林业科学, 2004, 40 (2): 61- 67.
doi: 10.3321/j.issn:1001-7488.2004.02.011 |
|
Jia L M, Xing C S, Wei Y K, et al. Growth and photosynthetic characteristics of poplar fast-growing and productive forests under subsurface drip irrigation. Scientia Silvae Sinicae, 2004, 40 (2): 61- 67.
doi: 10.3321/j.issn:1001-7488.2004.02.011 |
|
刘 峰, 席本野, 戴腾飞, 等. 2020. 水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响. 北京林业大学学报, 42(1): 75−83. | |
Liu F, Xi B Y, Dai T F, et al. 2020. Effect of water-fertilizer coupling on soil nitrogen, fine root distribution and biomass in Populus tomentosa stands. Journal of Beijing Forestry University, 42(1): 75−83. [in Chinese] | |
万长园, 王明玉, 王慧芳, 等. 华北平原典型剖面地下水三氮污染时空分布特征. 地球与环境, 2014, 42 (4): 472- 479. | |
Wan C Y, Wang M Y, Wang H F, et al. Spatial and temporal distribution characteristics of groundwater trinitrogen pollution in a typical section of the North China Plain. Earth and Environment, 2014, 42 (4): 472- 479. | |
王亚飞, 贺曰林, 杨红青, 等. 灌溉施肥对杨树人工林林木及地力效应研究进展. 世界林业研究, 2023, 36 (5): 63- 69. | |
Wang Y F, He Y L, Yang H Q, et al. Research progress on the effects of irrigation and fertilization on trees and soil fertility in poplar plantations. World Forestry Research, 2023, 36 (5): 63- 69. | |
王 烨. 2015. 毛白杨速生纸浆林地下滴灌施肥效应研究. 北京: 北京林业大学. | |
Wang Y. 2015. Study on the effect of fertilization by subsurface drip irrigation in a fast-growing pulpwood forest of hairy poplar. Beijing: Beijing Forestry University. [in Chinese] | |
王 烨, 李广德, 刘国彬, 等. 毛白杨人工林物候特征和生长对施肥的可塑性响应. 林业科学, 2023, 59 (5): 32- 40.
doi: 10.11707/j.1001-7488.LYKX20220649 |
|
Wang Y, Li G D, Liu G B, et al. Plasticity responses of phenological characteristics and tree growth of Populus tomentosa plantation to fertilization. Scientia Silvae Sinicae, 2023, 59 (5): 32- 40.
doi: 10.11707/j.1001-7488.LYKX20220649 |
|
席本野. 杨树根系形态、分布、动态特征及其吸水特性. 北京林业大学学报, 2019, 41 (12): 37- 49.
doi: 10.12171/j.1000-1522.20190400 |
|
Xi Benye. Morphology, distribution and dynamic characteristics of poplar root system and its water absorption characteristics. Journal of Beijing Forestry University, 2019, 41 (12): 37- 49.
doi: 10.12171/j.1000-1522.20190400 |
|
席本野, 邸 楠, 曹治国, 等. 2018. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示. 植物生态学报, 42(9): 885−905. | |
Xi B Y, Di N, Cao Z G, et al. 2018. Characteristics and mechanisms of deep soil water uptake and utilization by trees: Implications for plantation forest cultivation. Chinese Journal of Plant Ecology, 42(9): 885−905. [in Chinese] | |
席本野, 王 烨, 邸 楠, 等. 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响. 生态学报, 2012, 32 (17): 5318- 5329. | |
Xi B Y, Wang Y, Di N et al. Influence of soil water potential on growth and physiological characteristics of Populus tomentosa pulpwood forest under subsurface drip irrigation. Acta Ecologica Sinica, 2012, 32 (17): 5318- 5329. | |
闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响. 生态学报, 2015, 35 (11): 3692- 3701. | |
Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana plantation. Acta Ecologica Sinica, 2015, 35 (11): 3692- 3701. | |
杨红青, 王亚飞, 贾黎明, 2023. 短轮伐期毛白杨S86纸浆林生长对沟灌水肥耦合的响应. 北京林业大学学报, 45(3): 68−78. | |
Yang H Q, Wang Y F, Jia L M. 2023. Response of pulp plantation growth of Populus tomentosa S86 in short rotation period to coupling of water and fertilizer in furrow irrigation. Journal of Beijing Forestry University, 45(3): 68−78. [in Chinese] | |
叶 灵, 巨晓棠, 刘 楠, 等. 华北平原不同农田类型土壤硝态氮累积及其对地下水的影响. 水土保持学报, 2010, 24 (2): 165- 168,178. | |
Ye L, Ju X T, Liu N, et al. Characteristics of nitrate accumulation and its effects on groundwater under typical cropping systems in North China Plain. Journal of Soil and Water Conservation, 2010, 24 (2): 165- 168,178. | |
于景麟, 刘 峰, 贺曰林, 等. 沟灌水氮耦合对毛白杨林木生长及水氮吸收利用的影响. 应用生态学报, 2020, 31 (7): 2314- 2322. | |
Yu J L, Liu F, He Y L, et al. Effects of water and nitrogen coupling under furrow irrigation on tree growth, absorption and utilization of water and nitrogen of Populus tomentosa. Chinese Journal of Applied Ecology, 2020, 31 (7): 2314- 2322. | |
张润哲, 朱嘉磊, 王 江, 等. 长期施氮与灌溉对毛白杨人工林土壤硝态氮分布与积累的影响. 林业科学研究, 2019, 32 (6): 7- 13. | |
Zhang R Z, Zhu J L, Wang J, et al. Effects of long-term nitrogen application and irrigation on the distribution and accumulation of nitrate nitrogen in soil of poplar plantation. Forestry Research, 2019, 32 (6): 7- 13. | |
赵广帅, 李发东, 李运生, 等. 长期施肥对土壤有机质积累的影响. 生态环境学报, 2012, 21 (5): 840- 847.
doi: 10.3969/j.issn.1674-5906.2012.05.010 |
|
Zhao G S, Li F D, Li Y S, et al. Effects of long-term fertilization on soil organic matter accumulation. Ecology and Environmental Sciences, 2012, 21 (5): 840- 847.
doi: 10.3969/j.issn.1674-5906.2012.05.010 |
|
朱嘉磊, 薄慧娟, 李 璇, 等. 不同毛白杨无性系林分蓄积量的长期水氮耦合效应. 林业科学, 2019, 55 (5): 27- 35. | |
Zhu J L, Bo H J, Li X, et al. Long-term water and nitrogen coupling effects on stand accumulation of different hairy poplar asexual lines. Scientia Silvae Sinicae, 2019, 55 (5): 27- 35. | |
朱之悌. 我国造纸国情的若干特点及其解决的对策. 北京林业大学学报, 2002, 24 (Z1): 288- 291.
doi: 10.3321/j.issn:1000-1522.2002.05.054 |
|
Zhu Z T. Some characteristics of China's paper-making situation and its countermeasures. Journal of Beijing Forestry University, 2002, 24 (Z1): 288- 291.
doi: 10.3321/j.issn:1000-1522.2002.05.054 |
|
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20 (1): 30- 59.
doi: 10.1890/08-1140.1 |
|
Du E Z, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 2020, 13 (3): 221- 226.
doi: 10.1038/s41561-019-0530-4 |
|
Braun S, Schindler C, Rihm B. Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Science of the Total Environment, 2017, 599-600, 637- 646.
doi: 10.1016/j.scitotenv.2017.04.230 |
|
Chen D M, Li J J, Lan Z C, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 2016, 30 (4): 658- 669.
doi: 10.1111/1365-2435.12525 |
|
Di N, Liu Y, Mead D J, et al. Root-system characteristics of plantation-grown Populus tomentosa, adapted to seasonal fluctuation in the groundwater table. Trees, 2018, 32 (1): 137- 149.
doi: 10.1007/s00468-017-1619-2 |
|
Elser J J, Dobberfuhl D R, MacKay N A, et al. Organism size, life history, and N: P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 1996, 46 (9): 674- 684.
doi: 10.2307/1312897 |
|
Forrester D I, Collopy J J, Beadle C L, et al. Interactive effects of simultaneously applied thinning, pruning and fertiliser application treatments on growth, biomass production and crown architecture in a young Eucalyptus nitens plantation. Forest Ecology Management, 2012, 267, 104- 116.
doi: 10.1016/j.foreco.2011.11.039 |
|
Forrester D I, Collopy J J, Beadle L C et al. Baker. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation. Forest Ecology and Management, 2013, 288, 21- 30.
doi: 10.1016/j.foreco.2011.11.024 |
|
Forrester D I. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: a review of their production ecology and interactions. Forest Ecology and Management, 2013, 310, 336- 347.
doi: 10.1016/j.foreco.2013.08.047 |
|
Forrester D I, Albrecht A T. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. Forest Ecology and Management, 2014, 328, 94- 102.
doi: 10.1016/j.foreco.2014.05.026 |
|
Gu B , Ying G , Chang S X , et al. Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 2013, 23 (5): 1112- 1121. | |
He Y L, Xi B Y, Bloomberg M, et al. Effects of drip irrigation and nitrogen fertigation on stand growth and biomass allocation in young triploid Populus tomentosa plantations. Forest ecology and management, 2020, 461, 117937.
doi: 10.1016/j.foreco.2020.117937 |
|
He Y L, Xi B Y, Li G D, et al. Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agricultural Water Management, 2021, 243, 106460.
doi: 10.1016/j.agwat.2020.106460 |
|
Henriksson, N, Lim H, Marshall J, et al. Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest-but not under nitrogen-poor conditions. New Phytologist, 2021, 232 (1): 113- 122. | |
Jiang L, Tian D, Ma S H, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Science of the Total Environment, 2018, 618, 1064- 1070. | |
Koerselman W, Meuleman A F M. 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of applied Ecology, 1441−1450. | |
Liu J Q, Li D D, Fernández J E, et al. Variations in water-balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 2022, 320, 108958.
doi: 10.1016/j.agrformet.2022.108958 |
|
Lu X K, Mo J M, Gilliam F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 2010, 16 (10): 2688- 2700.
doi: 10.1111/j.1365-2486.2010.02174.x |
|
Lu X K, Vitousek P M, Mao Q G, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (20): 5187- 5192. | |
Norby R J, Kauwe M G, Domingues T F, et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 2016, 209 (1): 17- 28.
doi: 10.1111/nph.13593 |
|
O'Hara K L, York R A. Leaf area development and crown architecture in a giant Sequoia Spacing study. Forest Science, 2014, 60 (4): 776- 783.
doi: 10.5849/forsci.13-063 |
|
Ottinger S L, Miniat C F, Wurzburger N. Nitrogen and light regulate symbiotic nitrogen fixation by a temperate forest tree. Oecologia, 2023, 201, 565- 574.
doi: 10.1007/s00442-023-05313-0 |
|
Pinheiro R C, Bouillet J P, Pivello V R, et al. Roots take up labeled nitrogen from a depth of 9 m in a wooded savanna in Brazil. Soil Biology and Biochemistry, 2021, 160, 108282.
doi: 10.1016/j.soilbio.2021.108282 |
|
Taylor B N, Menge D N. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 2018, 4, 655- 661.
doi: 10.1038/s41477-018-0231-9 |
|
Tian D S, Niu S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10 (2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
|
Tian D, Li P, Fang W J, et al. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 2017, 14, 3461- 3469.
doi: 10.5194/bg-14-3461-2017 |
|
Wang S Q, Song M H, Wang C M et al. Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of the Total Environment, 2023, 904, 166403.
doi: 10.1016/j.scitotenv.2023.166403 |
|
Wang Z, Zhang X Y, Liu L, et al. Spatial and seasonal patterns of atmospheric nitrogen deposition in North China. Atmospheric and Oceanic Science Letters, 2020, 13 (3): 188- 194.
doi: 10.1080/16742834.2019.1701385 |
|
Wilske B, Lu N, Wei L, et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. Journal of Environmental Management, 2009, 90 (8): 2762- 2770.
doi: 10.1016/j.jenvman.2009.03.004 |
|
Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 2016, 176, 243- 254.
doi: 10.1016/j.agwat.2016.06.017 |
|
Zhu W, Wu X C, Jia L M, et al. Effects of key forest management practices and climatic factors on the growth of Populus tomentosa plantations in the North China Plain. Forest Ecology and Management, 2022, 521, 120444.
doi: 10.1016/j.foreco.2022.120444 |
[1] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[2] | 刘美宏,闫琦铭,訾龙博,雷亚芳,闫丽. 糠醇-环氧植物油复合改性毛白杨木材的物理力学性能[J]. 林业科学, 2024, 60(11): 149-159. |
[3] | 黄梦遥, 张润哲, 史策, 杨昊, 魏一凡, 张兆德, 祝琳, 宋连君, 聂立水, 王登芝. 不同施氮量和灌水水平下毛白杨林地土壤矿质氮动态[J]. 林业科学, 2023, 59(9): 45-54. |
[4] | 李玲雅,邸楠,刘金强,赵小宁,邹松言,付海曼,席本野. 短轮伐毛白杨人工林耗水规律及作物系数曲线构建[J]. 林业科学, 2023, 59(10): 76-88. |
[5] | 张亚雄,王烨,李广德,李豆豆,贺曰林,席本野,孙丽娟. 三倍体毛白杨分枝格局对不同土壤供水水平的响应[J]. 林业科学, 2021, 57(3): 145-151. |
[6] | 孙明慧,刘勇,王长伟,李国雷,王苗苗,宋协海,常笑超,万芳芳,宋怀山. 密度和行距配置对毛白杨苗木质量的影响[J]. 林业科学, 2021, 57(3): 152-160. |
[7] | 乔栋,刘勇,田书勇,张锋,王亚晶,李晓丽,冯雪瑾,张亚男. 木质化期水分管理对毛白杨苗木形态、生理和造林效果的影响[J]. 林业科学, 2021, 57(11): 169-178. |
[8] | 马煦,曹治国,岳晨,金楚晗,刘俊,刘洋,修桂芳,席本野. 降雨和灌溉影响下毛白杨叶片的颗粒物滞纳特征变化及其生理特性响应规律[J]. 林业科学, 2020, 56(8): 181-190. |
[9] | 朱嘉磊, 薄慧娟, 李璇, 文春燕, 王江, 聂立水, 田菊, 宋莲君. 不同毛白杨无性系林分蓄积量的长期水氮耦合效应[J]. 林业科学, 2019, 55(5): 27-35. |
[10] | 安胜男, 马晓军, 朱礼智. 木粉增强P34HB生物复合材料的制备及其结构性能表征[J]. 林业科学, 2019, 55(3): 125-133. |
[11] | 邹松言,李豆豆,汪金松,邸楠,刘金强,王烨,李广德,段劼,贾黎明,席本野. 毛白杨幼林细根对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10): 124-137. |
[12] | 李建波, 贾会霞, 张进, 刘伯斌, 胡建军, 王丽娟, 卢孟柱. 毛白杨PtoWOX4a基因过表达对次生生长的影响[J]. 林业科学, 2018, 54(2): 52-59. |
[13] | 李豆豆, 席本野, 唐连峰, 冯超, 贺曰林, 张亚雄, 刘龙龙, 刘金强, 贾黎明. 砂壤土下滴灌毛白杨幼林土壤水分运移规律与模拟[J]. 林业科学, 2018, 54(12): 157-168. |
[14] | 席本野, 王烨, 贾黎明. 滴灌施肥下施氮量和施氮频率对毛白杨生物量及氮吸收的影响[J]. 林业科学, 2017, 53(5): 63-73. |
[15] | 林文树, 穆丹, 王丽平, 邵立郡, 吴金卓. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5): 17-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||