|
韩继红, 邵文豪, 刘金凤, 等. 无患子硬枝扦插进程插穗内源激素和多酚类物质含量变化. 经济林研究, 2019, 37 (3): 37- 43, 51.
|
|
Han J H, Shao W H, Liu J F, et al. Content changes of endogenous hormone and polyphenols during hardwood cutting progress in Sapindus mukorossi. Non-wood Forest Research, 2019, 37 (3): 37- 43, 51.
|
|
胡国宇, 王 丹, 张 猛, 等, 2021. IBA对费约果扦插生根及相关生理特性的影响. 中南林业科技大学学报, 41(10): 45–56.
|
|
Hu G Y, Wang D, Zhang M, et al. 2021. Effects of IBA on rooting and physiological characteristics of Feijoa sellowiana cuttings. Journal of Central South University of Forestry & Technology, 41(10): 45–56. [in Chinese]
|
|
吕庚鑫, 孟益德, 庆 军, 等. ‘华仲6号’杜仲嫩枝扦插生根的解剖及生理变化. 林业科学, 2022, 58 (2): 113- 124.
|
|
Lü G X, Meng Y D, Qing J, et al. Changes of anatomical structure and physiology during softwood cutting rooting of Eucommia ulmoides ’Huazhong No. 6’. Scientia Silvae Siicae, 2022, 58 (2): 113- 124.
|
|
罗嘉亮, 李 凡, 郝瑞杰, 等. 外源生长素对杜梨组培不定芽生根及相关氧化酶的影响. 经济林研究, 2020, 38 (1): 125- 132.
|
|
Luo J L, Li F, Hao R J, et al. Effects of exogenous auxin on adventitious bud rooting and related oxidases in tissue culture of Pyrus betulifolia. Non-wood Forest Research, 2020, 38 (1): 125- 132.
|
|
马 攀, 龚榜初, 江锡兵, 等. 不同砧木嫁接甜柿苗期生长生理特性及亲和性评价. 林业科学研究, 2015, 28 (4): 518- 523.
doi: 10.3969/j.issn.1001-1498.2015.04.010
|
|
Ma P, Gong B C, Jiang X B, et al. Evaluation on affinity, growth trait and physiology indicators of persimmon grafted on different stocks. Forest Research, 2015, 28 (4): 518- 523.
doi: 10.3969/j.issn.1001-1498.2015.04.010
|
|
史锋厚, 赵 瑞, 罗 帅, 等. 南京椴嫩枝扦插生根过程中植物激素的变化. 中南林业科技大学学报, 2019, 39 (2): 21- 26.
|
|
Shi F H, Zhao R, Luo S, et al. Study on plant hormone changes in soft cuttings of Tilia miqueliana during rooting. Journal of Central South University of Forestry & Technology, 2019, 39 (2): 21- 26.
|
|
吴开云, 龚榜初, 徐 阳, 等. 不同植物生长调节剂对柿砧亚林6号硬枝扦插生根的影响. 浙江农业学报, 2021, 33 (7): 1256- 1263.
doi: 10.3969/j.issn.1004-1524.2021.07.11
|
|
Wu K Y, Gong B C, Xu Y, et al. Effects of different plant growth regulators on hardwood cuttage of persimmon rootstock Yalin 6. Acta Agriculturae Zhejiangensis, 2021, 33 (7): 1256- 1263.
doi: 10.3969/j.issn.1004-1524.2021.07.11
|
|
徐珊珊, 徐大平, 洪 舟, 等. 降香黄檀生根的生理机制. 中南林业科技大学学报, 2021, 41 (10): 1- 10.
|
|
Xu S S, Xu D P, Hong Z, et al. Physiological mechanism of rooting of Dalbegia odorifera cuttings. Journal of Central South University of Forestry & Technology, 2021, 41 (10): 1- 10.
|
|
Abbasi S, Mirsoleimani A, Jafari M. Diversity of phenolic compounds, antioxidant capacity, and mineral element content in four fig cultivars (Ficus carica L.) and their correlation with the rooting of hardwood cuttings. Arid Land Research and Management, 2024, 38 (4): 606- 623.
doi: 10.1080/15324982.2024.2318633
|
|
Bollmark M, Eliasson L. Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiologia Plantarum, 1990, 80 (4): 534- 540.
doi: 10.1111/j.1399-3054.1990.tb05675.x
|
|
Caplan D, Stemeroff J, Dixon M A, et al. Vegetative propagation of Cannabis by stem cuttings: effects of leaf number, cutting position, rooting hormone, and leaf tip removal. Canadian Journal of Plant Science, 2018, 98 (5): 1126- 1132.
doi: 10.1139/cjps-2018-0038
|
|
Chang E M, Guo W, Dong Y, et al. Metabolic profiling reveals key metabolites regulating adventitious root formation in ancient Platycladus orientalis cuttings. Frontiers in Plant Science, 2023, 14, 1192371.
doi: 10.3389/fpls.2023.1192371
|
|
Chen H L, Lei Y Z, Sun J J, et al. Effects of different growth hormones on rooting and endogenous hormone content of two Morus alba L. cuttings. Horticulturae, 2023, 9 (5): 552.
doi: 10.3390/horticulturae9050552
|
|
Chen J X, Yang J, Ma L L, et al. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 2020, 10 (1): 2611.
doi: 10.1038/s41598-020-59451-z
|
|
Cox D A, 2018. Hartmann and Kester’s plant propagation principles and practices, 9th edition. HortScience, 53(5): 741.
|
|
Denaxa N-K, Roussos P A, Vemmos S N. Assigning a role to the endogenous phenolic compounds on adventitious root formation of olive stem cuttings. Journal of Plant Growth Regulation, 2020, 39 (2): 411- 421.
|
|
Denaxa N K, Vemmos S N, Roussos P A. Shoot girdling improves rooting performance of kalamata olive cuttings by upregulating carbohydrates, polyamines and phenolic compounds. Agriculture, 2021, 11 (1): 71.
doi: 10.3390/agriculture11010071
|
|
Devi J, Kaur E, Swarnkar M K, et al. De novo transcriptome analysis provides insights into formation of in vitro adventitious root from leaf explants of Arnebia euchroma. BMC Plant Biology, 2021, 21 (1): 414.
doi: 10.1186/s12870-021-03172-6
|
|
Direito R, Rocha J, Sepodes B, et al. From Diospyros kaki L. (persimmon) phytochemical profile and health impact to new product perspectives and waste valorization. Nutrients, 2021, 13 (9): 3283.
doi: 10.3390/nu13093283
|
|
Druege U, Franken P, Hajirezaei M R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science, 2016, 7, 381.
|
|
Ghimire B K, Kim S H, Yu C Y, et al. Biochemical and physiological changes during early adventitious root formation in Chrysanthemum indicum linné cuttings. Plants, 2022, 11 (11): 1440.
doi: 10.3390/plants11111440
|
|
Guan L, Tayengwa R, Cheng Z M, et al. Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biology, 2019, 19 (1): 435.
doi: 10.1186/s12870-019-2002-9
|
|
Hou J W, Guo S J, Wang G Y. Effects of in vitro subculture on the physiological characteristics of adventitious root formation in microshoots of Castanea mollissima cv. ‘yanshanhong’. Journal of Forestry Research, 2010, 21 (2): 155- 160.
doi: 10.1007/s11676-010-0025-z
|
|
Kuhn B M, Geisler M, Bigler L, et al. Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiology, 2011, 156 (2): 585- 595.
doi: 10.1104/pp.111.175976
|
|
Li C X, Bian B T, Gong T Y, et al. Comparative proteomic analysis of key proteins during abscisic acid-hydrogen peroxide-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. Journal of Plant Physiology, 2018, 229, 185- 194.
doi: 10.1016/j.jplph.2018.07.012
|
|
Li S W. Molecular bases for the regulation of adventitious root generation in plants. Frontiers in Plant Science, 2021, 12, 614072.
doi: 10.3389/fpls.2021.614072
|
|
Liu G B, Zhao J Z, Liao T, et al. Histological dissection of cutting-inducible adventitious rooting in Platycladus orientalis reveals developmental endogenous hormonal homeostasis. Industrial Crops and Products, 2021, 170 (1): 113817.
|
|
Matheus J R V, Andrade C J de, Miyahira R F, et al. , 2020. Persimmon (Diospyros Kaki L.): chemical properties, bioactive compounds and potential use in the development of new products – a review. Food Reviews International, 38(4): 384–401.
|
|
Mauriat M, Petterle A, Bellini C, et al. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant Journal , 2014, 78 (3): 372- 384.
|
|
Monder M J, Pacholczak A. Polyphenolic acid changes in stem cuttings of Rosa cultivars in relation to phenological stage and rooting enhancers. Agronomy, 2023, 13 (5): 1405.
doi: 10.3390/agronomy13051405
|
|
Mu H Z, Jin X H, Ma X Y, et al. Ortet age effect, anatomy and physiology of adventitious rooting in Tilia mandshurica softwood cuttings. Forests, 2022, 13 (9): 1427.
doi: 10.3390/f13091427
|
|
Negishi N, Oishi M, Kawaoka A. Chemical screening for promotion of adventitious root formation in Eucalyptus globulus. BMC Proceedings, 2011, 5 (S7): 139.
doi: 10.1186/1753-6561-5-S7-P139
|
|
Nishimura R, Yamasaki A, Sugiura H, et al. Rooting effects of NAA treatment on cuttings of persimmon dwarfing rootstock ‘Hourakudai’ and growing conditions for grafted scions. Acta Horticulturae, 2022, 1338 (25): 171- 178.
|
|
Ozdemir A E, Candir E, Toplu C, et al. Effect of hot water treatment on astringency removal in persimmon cultivars. International Journal of Fruit Science, 2020, 20 (S2): S557- S569.
|
|
Qin R F, Zhao Q R, Gu C R, et al. Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch. Scientific Reports, 2023, 13, 1354.
doi: 10.1038/s41598-023-27779-x
|
|
Rout G R. 2006. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regulation, 48: 111–117.
|
|
Santos-Rufo A, Rodríguez-Solana R, Fernández-Recamales M Á, et al. Comparative analysis of anatomical characteristics and phenolic compounds of two highbush blueberry (Vaccinium corymbosum L.) cultivars with different rooting ability of semi-hardwood cuttings. Scientia Horticulturae, 2024, 324, 112591.
doi: 10.1016/j.scienta.2023.112591
|
|
Shang W Q, Wang Z, He S L, et al. Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro. Scientia Horticulturae, 2017, 224, 53- 60.
doi: 10.1016/j.scienta.2017.04.038
|
|
Shao F X, Wang S, Huang W, et al. Effects of IBA on the rooting of branch cuttings of Chinese jujube (Zizyphus jujuba Mill.) and changes to nutrients and endogenous hormones. Journal of Forestry Research, 2018, 29 (6): 1557- 1567.
doi: 10.1007/s11676-017-0557-6
|
|
Sun D, Zhao X L, Ai J, et al. Study on the rooting physiological mechanism of Schisandra chinensis (Turcz.) Baill. green-branched cuttings. Forests, 2023, 14 (7): 1365.
doi: 10.3390/f14071365
|
|
Tafuri F, Businelli M, Scarponi L. Effect of caffeic and p-coumaric acids on indole-3-acetic acid catabolism. Journal of the Science of Food and Agriculture, 1972, 23 (12): 1417- 1423.
doi: 10.1002/jsfa.2740231205
|
|
Tao R, Sugiura A. 1992. Micropropagation of Japanese Persimmon (Diospyros kaki L.)//Bajaj Y P S. ed. Biotechnology in agriculture and forestry, Vol. 18: high-tech and micropropagation II. Berlin, Heidelberg: Springer, 424–440.
|
|
Tetsumura T, Sei Y, Ogata H, et al. Rooting treatment with 1-naphthaleneacetic acid to softwood cuttings of dwarfing rootstocks for persimmon. Acta Horticulturae, 2022, 1338 (25): 163- 170.
|
|
Trobec M, Stampar F, Veberic R, et al. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings. Journal of Plant Physiology, 2005, 162 (5): 589- 597.
doi: 10.1016/j.jplph.2004.10.009
|
|
Wang Y, Khan M A, Zhu Z L, et al. Histological, morpho-physiological, and biochemical changes during adventitious rooting induced by exogenous auxin in Magnolia wufengensis cuttings. Forests, 2022, 13 (6): 925.
doi: 10.3390/f13060925
|
|
Xiong F, Liao J R, Ma Y C, et al. The protective effect of exogenous putrescine in the response of tea plants (Camellia sinensis) to salt stress. HortScience, 2018, 53 (11): 1640- 1646.
doi: 10.21273/HORTSCI13283-18
|
|
Yamada M. Persimmon propagation, orchard planting, training and pruning in Japan. Advances in Horticultural Science, 2008, 22 (4): 269- 273.
|
|
Yang W X, Zhuang J Q, Ding S Y, et al. Study on cutting cultivation technology and rooting mechanism of Cyclocarya paliurus. Ecological Chemistry and Engineering S, 2022, 29 (3): 379- 389.
doi: 10.2478/eces-2022-0027
|
|
Zhou X X, Li R Y, Shen H L, et al. Effect of exogenous plant growth regulators and rejuvenation measures on the endogenous hormone and enzyme activity responses of Acer mono Maxim in cuttage rooting. International Journal of Molecular Sciences, 2023, 24 (15): 11883.
doi: 10.3390/ijms241511883
|