林业科学 ›› 2019, Vol. 55 ›› Issue (10): 124-137.doi: 10.11707/j.1001-7488.20191013
邹松言1,李豆豆1,汪金松2,邸楠3,刘金强1,王烨4,李广德5,段劼1,贾黎明1,席本野1,*
收稿日期:
2019-02-20
出版日期:
2019-10-25
发布日期:
2019-11-26
通讯作者:
席本野
基金资助:
Songyan Zou1,Doudou Li1,Jinsong Wang2,Nan Di3,Jinqiang Liu1,Ye Wang4,Guangde Li5,Jie Duan1,Liming Jia1,Benye Xi1,*
Received:
2019-02-20
Online:
2019-10-25
Published:
2019-11-26
Contact:
Benye Xi
Supported by:
摘要:
目的: 明确毛白杨细根对土壤水分的短期响应,充分了解其根系对土壤水分的生态适应策略,并为其人工林水分管理策略的优化提供理论依据。方法: 在栽植砂壤土的2年生毛白杨林分中,设置3个灌溉处理:充分灌溉(FI)、控水灌溉(CI)和对照(CK)。灌溉2个月后,在各处理林分中采用根钻法进行取样,得到不同处理、深度和水平距离的细根生长、分布及形态数据。结果: 垂直方向上,各处理间细根生物量密度(FRBD)在任一土层内均无显著差异(P>0.05);在各处理间浅土层水分差异较大的区域和整个根区内,细根分布深度表现出CK > CI > FI的特点,该规律在水分差异较小的区域未出现;水平方向上,CK处理下的FRBD呈现出明显的随距树距离增大而逐渐减小的趋势,该趋势在FI和CI处理中较弱;除水平距树30 cm处CK处理的FRBD显著大于FI和CI外(P < 0.05),其余距离处各处理间FRBD差异均不显著(P>0.05);细根分布表现出距树越远垂直分布越浅的特点;灌溉处理下,细根在滴头两侧的浅土层中大量聚集,对照处理下细根则大量聚集在靠近树体的深土层中;0~50 cm的任意土层内,各处理间细根形态指标(直径、比根长、组织密度)均无显著差异(P>0.05);林木平均生长空间内整个根区的细根总量表现出CK > FI > CI的特点。结论: 当浅土层存在短期水分差异时,随着干旱胁迫加剧,毛白杨细根生物量的垂直分布逐渐加深,同时向靠近树体的方向聚集;毛白杨通过调节细根分布而非浅土层内细根形态以适应水分胁迫;就细根总量而言,毛白杨会采取先小幅降低,后显著升高的调节策略。在旱季对毛白杨幼林进行灌溉时,建议采用较高频率的充分灌溉。
中图分类号:
邹松言,李豆豆,汪金松,邸楠,刘金强,王烨,李广德,段劼,贾黎明,席本野. 毛白杨幼林细根对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10): 124-137.
Songyan Zou,Doudou Li,Jinsong Wang,Nan Di,Jinqiang Liu,Ye Wang,Guangde Li,Jie Duan,Liming Jia,Benye Xi. Response of Fine Roots to Soil Moisture of Different Gradients in Young Populus tomentosa Plantation[J]. Scientia Silvae Sinicae, 2019, 55(10): 124-137.
白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响. 植物生态学报, 1999. 23 (2): 155- 160.
doi: 10.3321/j.issn:1005-264X.1999.02.007 |
|
Bai Y F . Influence of seasonal distribution of precipitation on primary productivity of Stipa krylovii community. Chinese Journal of Plant Ecology, 1999. 23 (2): 155- 160.
doi: 10.3321/j.issn:1005-264X.1999.02.007 |
|
蔡丽平, 吴鹏飞, 侯晓龙, 等. 类芦根系对不同强度干旱胁迫的形态学响应. 中国农学通报, 2012. 28 (28): 44- 48. | |
Cai L P , Wu P F , Hou X L , et al. Morphological response to different drought stress in the roots of Neyraudia reynaudiana. Chinese Agricultural Science Bulletin, 2012. 28 (28): 44- 48. | |
曹裕松, 吴风云, 肖宜安, 等. 落退耕还林对土壤养分含量及其垂直分布的影响. 生态环境学报, 2016. 25 (2): 196- 201. | |
Cao Y S , Wu F Y , Xiao Y A , et al. Effect of returning farmland to forests on soil nutrients contents and its vertical distribution. Ecology and Environmental Sciences, 2016. 25 (2): 196- 201. | |
邸楠, 席本野, JeremiahR. Pinto, 等. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应. 植物生态学报, 2013. 37 (10): 961- 971. | |
Di N , Xi B Y , Pinto J R , et al. Root biomass distribution of triploid Populus tomentosa under wide-and narrow-row spacing planting schemes and its responses to soil nutrients. Chinese Journal of Plant Ecology, 2013. 37 (10): 961- 971. | |
董玉峰, 姜岳忠, 王卫东, 等. 大汶河流域杨树根系的生物量组成和空间分布. 中国水土保持学报, 2014. 12 (5): 30- 35. | |
Dong Y F , Jiang Y Z , Wang W D , et al. Composition and spatial distribution of Populus root biomass in the Dawenhe Watershed. Science of Soil Water Conservation, 2014. 12 (5): 30- 35. | |
耿玉清, 单宏臣, 谭笑, 等. 人工针叶林林冠空隙土壤的研究. 北京林业大学学报, 2002. 24 (4): 16- 19.
doi: 10.3321/j.issn:1000-1522.2002.04.004 |
|
Geng Y Q , Shan H C , Tan X , et al. Soils in forest gaps in artificial coniferous forests. Journal of Beijing Forestry University, 2002. 24 (4): 16- 19.
doi: 10.3321/j.issn:1000-1522.2002.04.004 |
|
李豆豆, 席本野, 唐连峰, 等. 砂壤土下滴灌毛白杨幼林土壤水分运移规律与模拟. 林业科学, 2018. 54 (12): 157- 168.
doi: 10.11707/j.1001-7488.20181218 |
|
Li D D , Xi B Y , Tang L F , et al. Patterns of soil water movement in drip-irrigated young Populus tomentosa plantations on sandy loam soil and their simulation. Scientia Silvae Sinicae, 2018. 54 (12): 157- 168.
doi: 10.11707/j.1001-7488.20181218 |
|
李盼盼. 2012.杨树人工林细根的空间分布特征及其季节动态.泰安:山东农业大学硕士学位论文. | |
Li P P. 2012. Fine root distribution patterns and seasonal dynamics of poplar plantation. Tai'an: MS thesis of Shandong Agricultural University.[in Chinese] | |
马理辉. 2011.坡地枣树根系分布及根域水分调控作用研究.北京:中国科学院研究生院博士学位论文. | |
Ma L H. 2011. Root distribution of jujube influence of root zone water control in the hilly densely plantation. Beijing: PhD thesis of University of Chinese Academy of Sciences.[in Chinese] | |
王迪海, 赵忠, 薛文鹏, 等. 水分生态环境对刺槐细根垂直分布的影响. 水土保持研究, 2005. 12 (5): 200- 202.
doi: 10.3969/j.issn.1005-3409.2005.05.051 |
|
Wang D H , Zhao Z , Xue W P , et al. Effect of soil water environment on vertical fine root distribution of Robinia pseudoacacia. Research of Soil and Water Conservation, 2005. 12 (5): 200- 202.
doi: 10.3969/j.issn.1005-3409.2005.05.051 |
|
王文全, 贾渝彬, 胥丽敏, 等. 毛白杨根系分布的研究. 河北农业大学学报, 1997. 20 (1): 24- 29. | |
Wang W Q , Jia Y B , Xu L M , et al. Study on the root distribution of Populus tomentosa. Journal of Agricultural University of Hebei, 1997. 20 (1): 24- 29. | |
席本野, 邸楠, 刘金强, 等. 树木吸收利用深层土壤水的特征与机制:对人工林培育的启示. 植物生态学报, 2018. 42 (9): 885- 905. | |
Xi B Y , Di N , Liu J Q , et al. Characteristics and mechanisms of deep soil water uptake and utilization by trees:implications for plantation cultivation. Chinese Journal of Plant Ecology, 2018. 42 (9): 885- 905. | |
席本野, 贾黎明, 刘寅, 等. 宽窄行栽植模式下三倍体毛白杨吸水根系的空间分布与模拟. 浙江林学院学报, 2010. 27 (2): 259- 265. | |
Xi B Y , Jia L M , Liu Y , et al. Spatial distribution and simulation for fine roots of triploid Populus tomentosa with wide and narrow row spacing. Journal of Zhejiang Forestry College, 2010. 27 (2): 259- 265. | |
闫小莉, 戴腾飞, 贾黎明, 等. 欧美108杨细根形态及垂直分布对水氮耦合措施的响应. 植物生态学报, 2015a. 39 (8): 825- 837. | |
Yan X L , Dai T F , Jia L M , et al. Responses of the fine root morphology and vertical distribution of Populus×euramericana 'Guariento' to the coupled effect of water and nitrogen. Chinese Journal of Plant Ecology, 2015. 39 (8): 825- 837.
doi: 10.17521/cjpe.2015.0079 |
|
闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响. 生态学报, 2015b. 35 (11): 3692- 3701. | |
Yan X L , Dai T F , Xing C S , et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus×euramericana plantation. Acta Ecologica Sinica, 2015. 35 (11): 3692- 3701. | |
杨秀云, 韩有志, 张芸香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化. 植物生态学报, 2008. 32 (6): 1277- 1284. | |
Yang X Y , Han Y Z , Zhang Y X . Effect of horizontal distance on fine root biomass and seasonal dynamics in Larix principis-rupprechtii plantation. Journal of Plant Ecology, 2008. 32 (6): 1277- 1284. | |
张龙宁, 向地奎, 席本野, 等. 三倍体毛白杨人工林浅层土壤细根对地下滴灌不同水分处理的响应. 东北林业大学学报, 2013. 41 (7): 40- 44. | |
Zhang L N , Xiang D K , Xi B Y , et al. Response of the fine roots of triploid Populus tomentosa to different subsurface drip irrigation treatments in shallow soil layers. Journal of Northeast Forestry University, 2013. 41 (7): 40- 44. | |
Adriano E , Laclau J P , Rodrigues J D . Deep rooting of rainfed and irrigated orange trees in Brazil. Trees, 2017. 31 (1): 285- 297.
doi: 10.1007/s00468-016-1483-5 |
|
Atkinson D . The use of soil resources in high density planting systems. Acta Horticulturae, 1978. 65 (65): 79- 90. | |
Bakker M R , Augusto L , Achat D L . Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant and Soil, 2006. 286 (1/2): 37- 51. | |
Barber K R , Leeds-Harrison P B , Lawson C S , et al. Soil aeration status in a lowland wet grassland. Hydrological Processes, 2004. 18 (2): 329- 341.
doi: 10.1002/hyp.1378 |
|
Brunner I , Pannatier E G , Frey B , et al. Morphological and physiological responses of scots pine fine roots to water supply in a dry climatic region in Switzerland. Tree Physiology, 2009. 29 (4): 541- 550.
doi: 10.1093/treephys/tpn046 |
|
Canadell J , Jackson R B , Ehleringer J R , et al. Maximum rooting depth of vegetation types at the global scale. Oecologia, 1996. 108 (4): 583- 595.
doi: 10.1007/BF00329030 |
|
Christina M , Nouvellon Y , Laclau J P , et al. Importance of deep water uptake in tropical eucalypt forest. Functional Ecology, 2017. 31 (2): 509- 519. | |
Coleman M D . Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil, 2007. 299 (1): 195- 213. | |
Coleman M D , Aubrey D P . Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability. Tree Physiology, 2018. 38 (12): 1805- 1819.
doi: 10.1093/treephys/tpy033 |
|
Coomes D A , Grubb P J . Impacts of root competition in forests and woodlands:a theoretical framework and review of experiments. Ecological Monographs, 2000. 70 (2): 171- 207.
doi: 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2 |
|
Côté B , Hendershot W H , Fyles J W , et al. The phenology of fine root growth in a maple-dominated ecosystem:relationships with some soil properties. Plant and Soil, 1998. 201 (1): 59- 69.
doi: 10.1023/A:1004351705516 |
|
Dhiman I , Bilheux H , De Carlo K , et al. Quantifying root water extraction after drought recovery using sub-mm in situ empirical data. Plant and Soil, 2017. 424 (1/2): 73- 89. | |
Dickmann D I , Nguyen P V , Pregitzer K S . Effects of irrigation and coppicing on above-ground growth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones. Forest Ecology and Management, 1996. 80 (1): 163- 174. | |
Di N , Liu Y , Mead D J , et al. Root-system characteristics of plantation-grown Populus omentosa adapted to seasonal fluctuation in the groundwater able. Trees, 2017. 32 (1): 137- 149. | |
Fabião A , Madeira M , Steen E , et al. Development of root biomass in an Eucalyptus globulus plantation under different water and nutrient regimes. Plant and Soil, 1995. 168 | |
Fransen B , Kroon H D , Berendse F . Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia, 1998. 115 (3): 351- 358.
doi: 10.1007/s004420050527 |
|
Freschet G T , Roumet C . Sampling roots to capture plant and soil functions. Functional Ecology, 2017. 31 (8): 1506- 1518.
doi: 10.1111/1365-2435.12883 |
|
Gaul D , Hertel D , Borken W , et al. Effects of experimental drought on the fine root system of mature Norway spruce. Forest Ecology and Management, 2008. 256 (5): 1151- 1159.
doi: 10.1016/j.foreco.2008.06.016 |
|
Germon A , Cardinael R , Prieto I , et al. Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant and Soil, 2016. 401 (1/2): 409- 426. | |
Gill R A , Jackson R B . Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 2000. 147 (1): 13- 31.
doi: 10.1046/j.1469-8137.2000.00681.x |
|
Gordon W S , Jackson R B . Nutrient concentrations in fine roots. Ecology, 2000. 81 (1): 275- 280.
doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 |
|
Guevara A , Giordano C V , Aranibar J , et al. Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina). Plant and Soil, 2010. 330 (1/2): 447- 464. | |
Guo D L , Li H , Mitchell R J , et al. Fine root heterogeneity by branch order:exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 2008. 177 (2): 443- 456. | |
Guo D L , Xia M X , Wei X , et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 2008. 180 (3): 673- 683.
doi: 10.1111/j.1469-8137.2008.02573.x |
|
Hendrick R L , Pregitzer K S . The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research, 1993. 23 (12): 2507- 2520.
doi: 10.1139/x93-312 |
|
Hendrick R L , Pregitzer K S . The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience, 1997. 4 (1): 99- 105.
doi: 10.1080/11956860.1997.11682383 |
|
Herzog C , Steffen J , Pannatier E G , et al. Nine years of irrigation cause vegetation and fine root shifts in a water-limited pine forest. PLoS One, 2014. 9 (5): 1- 11. | |
Holloway J V , Rillig M C , Gurnell A M . Physical environmental controls on riparian root profiles associated with black poplar (Populus nigra L.) along the Tagliamento River, Italy. Earth Surface Processes and Landforms, 2017. 42 (48): 1262- 1273. | |
Jackson R B , Mooney H A , Schulze E D . A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94 (14): 7362- 7366.
doi: 10.1073/pnas.94.14.7362 |
|
Jerbi A , Nissim W G , Fluet R , et al. Willow root development and morphology changes under different irrigation and fertilization regimes in a vegetation filter. BioEnergy Research, 2015. 8 (2): 775- 787.
doi: 10.1007/s12155-014-9550-5 |
|
Jo I , Fridley J D , Frank D A . Linking above-and belowground resource use strategies for native and invasive species of temperate deciduous forests. Biological Invasions, 2015. 17 (5): 1545- 1554.
doi: 10.1007/s10530-014-0814-y |
|
Joslin J D , Wolfe M H , Hanson P J . Effects of altered water regimes on forest root systems. New Phytologist, 2000. 147 (1): 117- 129.
doi: 10.1046/j.1469-8137.2000.00692.x |
|
Joslin J D , Wolfe M H , Hanson P J . Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant and Soil, 2001. 228 (2): 201- 212.
doi: 10.1023/A:1004866705021 |
|
King J S , Albaugh T J , Allen H L , et al. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002. 154 (2): 389- 398.
doi: 10.1046/j.1469-8137.2002.00393.x |
|
Kirfel K , Leuschner C , Hertel D , et al. Influence of root diameter and soil depth on the xylem anatomy of fine- to medium sized roots of mature beech trees in the top- and subsoil. Frontiers in Plant Science, 2017. 8, 1194.
doi: 10.3389/fpls.2017.01194 |
|
Kozlowski T T , Pallardy S G . Acclimation and adaptive responses ofwoody plants to environmental stresses. The Botanical Review, 2002. 68 (2): 270- 334.
doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2 |
|
Kramer-Walter K R , Laughlin D C . Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant and Soil, 2017. 416 (1/2): 539- 550. | |
Laclau J P , da Silva E A , Lambais G R , et al. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Frontiers in Plant Science, 2013. 4, 243. | |
Lima T T S , Miranda I S , Vasconcelos S S . Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytologist, 2010. 187 (3): 622- 630.
doi: 10.1111/j.1469-8137.2010.03299.x |
|
Ma L H , Liu X L , Wang Y K , et al. Effects of drip irrigation on deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region. Plant and Soil, 2013. 373 (1/2): 995- 1006. | |
Ma Z Q , Guo D L , Xu X L , et al. Evolutionary history resolves global organization of root functional roots. Nature, 2018. 555, 94- 97.
doi: 10.1038/nature25783 |
|
Majdi H . Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiology, 2001. 21 (15): 1057- 1061. | |
McCormack M L , Dickie I A , Eissenstat D M , et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015. 207 (3): 505- 518.
doi: 10.1111/nph.13363 |
|
McCormack M L , Guo D L . Impacts of environmental factors on fine root lifespan. Frontiers in Plant Science, 2014. 5, 205. | |
McIvor I R , Douglas G B , Hurst S E , et al. Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand. Agroforestry Systems, 2008. 72 (1): 75- 86. | |
Meier I C , Leuschner C . Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiology, 2008. 28 (2): 297- 309.
doi: 10.1093/treephys/28.2.297 |
|
Metcalfe D B , Meir P , Aragão L E O C , et al. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 2008. 311 (1): 189- 199. | |
Munné-Bosch S . Limits to tree growth and longevity. Trends in Plant Science, 2018. 23 (11): 985- 993.
doi: 10.1016/j.tplants.2018.08.001 |
|
Olesinski J , Lavigne M B , Krasowski M J . Effects of soil moisture manipulations on fine root dynamics in a mature balsam fir (Abies balsamea L. Mill.) forest. Tree Physiology, 2011. 31 (3): 339- 348.
doi: 10.1093/treephys/tpr006 |
|
Ostonen I , Puttsepp U , Biel C , et al. Specific root length as an indicator of environmental change. Plant Biosystems, 2007. 141 (3): 426- 442.
doi: 10.1080/11263500701626069 |
|
Persson H , Fircks Y V , Majdi H , et al. Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application. Plant and Soil, 1995. 168/169 (1): 161- 165.
doi: 10.1007/BF00029324 |
|
Pinheiro R C , de Deus Jr J C , Nouvellon Y , et al. A fast exploration of very deep soil layers by eucalyptus seedlings and clones in Brazil. Forest Ecology and Management, 2016. 366, 143- 152.
doi: 10.1016/j.foreco.2016.02.012 |
|
Pronk A A , Willigen P D , Heuvelink E , et al. Development of fine and coarse roots of Thuja occidentalis 'Brabant' in non-irrigated and drip-irrigated field plots. Plant and Soil, 2002. 243 (2): 161- 171.
doi: 10.1023/A:1019934508011 |
|
Reich P B . The world-wide 'fast-slow' plant economics spectrum:a traits manifesto. Journal of Ecology, 2014. 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Rewald B , Godbold D L , Falik O , et al. Root and rhizosphere processes-high time to dig deeper. Frontiers in Plant Science, 2014. 278 (5): 1- 3. | |
Samuelson L , Mathew R , Stokes T , et al. Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. Forest Ecology and Management, 2009. 258 (11): 2431- 2438.
doi: 10.1016/j.foreco.2009.08.020 |
|
Schenk H J . The shallowest possible water extraction profile:a null model for global root distribution. Vadose Zone Journal, 2008. 7 (3): 1119- 1124.
doi: 10.2136/vzj2007.0119 |
|
Schenk H J , Jackson R B . The global biogeography of roots. Ecological Monographs, 2002a. 72 (3): 311- 328.
doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 |
|
Schenk H J , Jackson R B . Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water limited ecosystems. Journal of Ecology, 2002b. 90 (38): 480- 494. | |
Silva J S , Rego F C . Root distribution of a Mediterranean shrub land in Portugal. Plant and Soil, 2003. 255 (2): 529- 540.
doi: 10.1023/A:1026029031005 |
|
Steele S J , Gower S T , Vogel J G , et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 1997. 17 (8/9): 577- 587. | |
Sundarapandian S M , Swamy P S . Fine root biomass distribution and productivity patterns under open and closed canopies of tropical forest ecosystems at Kodayar in Western Ghats, South India. Forest Ecology and Management, 1996. 86 (1): 181- 192. | |
Takahashi H . Hydrotropism:the current state of our knowledge. Journal of Plant Research, 1997. 110 (2): 163- 169.
doi: 10.1007/BF02509304 |
|
Trubat R , Cortina J , Vilagrosa A . Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees, 2006. 20 (3): 334- 339.
doi: 10.1007/s00468-005-0045-z |
|
Trumbore S E , Gaudinski J B . The secret lives of roots. Science, 2003. 302 (5649): 1344- 1345.
doi: 10.1126/science.1091841 |
|
Vogt K A , Vogt D J , Palmiotto P A , et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 1996. 187 (2): 159- 219. | |
Wang G L , Liu F , Xue S . Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings. Plant and Soil, 2017. 418 (1/2): 177- 189. | |
Xi B Y , Bloomberg M , Watt M S , et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 2016. 176, 243- 254.
doi: 10.1016/j.agwat.2016.06.017 |
|
Xi B Y , Wang Y , Jia L M , et al. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain:implications for irrigation water management. Agricultural Water Management, 2013. 117, 83- 92.
doi: 10.1016/j.agwat.2012.11.006 |
[1] | 朱嘉磊, 薄慧娟, 李璇, 文春燕, 王江, 聂立水, 田菊, 宋莲君. 不同毛白杨无性系林分蓄积量的长期水氮耦合效应[J]. 林业科学, 2019, 55(5): 27-35. |
[2] | 安胜男, 马晓军, 朱礼智. 木粉增强P34HB生物复合材料的制备及其结构性能表征[J]. 林业科学, 2019, 55(3): 125-133. |
[3] | 汪星, 高志永, 汪有科, 聂真义, 靳姗姗, 董建国. 修剪与覆盖对黄土丘陵区枣林土壤干层的修复效应[J]. 林业科学, 2018, 54(7): 24-30. |
[4] | 刘鹏, 贾昕, 杨强, 查天山, 王奔, 马景永. 毛乌素沙地油蒿灌丛生态系统的土壤呼吸特征[J]. 林业科学, 2018, 54(5): 10-17. |
[5] | 李建波, 贾会霞, 张进, 刘伯斌, 胡建军, 王丽娟, 卢孟柱. 毛白杨PtoWOX4a基因过表达对次生生长的影响[J]. 林业科学, 2018, 54(2): 52-59. |
[6] | 李豆豆, 席本野, 唐连峰, 冯超, 贺曰林, 张亚雄, 刘龙龙, 刘金强, 贾黎明. 砂壤土下滴灌毛白杨幼林土壤水分运移规律与模拟[J]. 林业科学, 2018, 54(12): 157-168. |
[7] | 席本野, 王烨, 贾黎明. 滴灌施肥下施氮量和施氮频率对毛白杨生物量及氮吸收的影响[J]. 林业科学, 2017, 53(5): 63-73. |
[8] | 耿鹏飞, 金光泽. 小兴安岭4种森林类型细根生物量的时空格局[J]. 林业科学, 2016, 52(6): 140-148. |
[9] | 郎莹, 汪明. 春夏两季连翘光合作用的土壤水分阈值效应及生产力分级[J]. 林业科学, 2016, 52(2): 38-46. |
[10] | 张秀英, 宋瑞清, 张星耀. 杨树受溃疡病菌感染后转录因子的应答变化[J]. 林业科学, 2015, 51(4): 110-115. |
[11] | 陈文业, 赵明, 张继强, 袁海峰, 窦英杰, 朱丽, 陈旭. 甘肃敦煌西湖荒漠-湿地生态系统土壤水分含量对植被特征的影响[J]. 林业科学, 2015, 51(11): 8-16. |
[12] | 许坛, 王华田, 朱婉芮, 王延平, 李传荣, 姜岳忠. 连作杨树细根根序形态及解剖结构[J]. 林业科学, 2015, 51(1): 119-126. |
[13] | 邱念伟, 周峰, 张士超, 杨东, 刘媛, 宋贤慧, 郑媛. 人工模拟倒春寒对杨树叶片活力的影响[J]. 林业科学, 2014, 50(7): 17-22. |
[14] | 魏鹏, 范川, 凌银花, 李贤伟, 刘运科, 张腾飞, 苏宇. 台湾桤木林草复合模式细根生物量及形态特征[J]. 林业科学, 2014, 50(7): 157-163. |
[15] | 宋曰钦, 谢宗强, 翟明普, 贾黎明. 三倍体毛白杨不同有机残体分解及氮磷释放特征[J]. 林业科学, 2014, 50(4): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||