林业科学 ›› 2025, Vol. 61 ›› Issue (5): 74-84.doi: 10.11707/j.1001-7488.LYKX20240543
何潇1,罗光成1,2,高文强1,李海奎1,曾伟生3,段福军4,雷相东1,*()
收稿日期:
2024-09-19
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
雷相东
E-mail:xdlei@ifrit.ac.cn
基金资助:
Xiao He1,Guangcheng Luo1,2,Wenqiang Gao1,Haikui Li1,Weisheng Zeng3,Fujun Duan4,Xiangdong Lei1,*()
Received:
2024-09-19
Online:
2025-05-20
Published:
2025-05-24
Contact:
Xiangdong Lei
E-mail:xdlei@ifrit.ac.cn
摘要:
目的: 建立包含固碳等级、林分密度指数和林龄的碳储量分级生长模型系,提出一种森林碳汇潜力估计方法,估计森林经营单位尺度碳汇潜力,为森林经营增汇提供依据。方法: 基于山西省森林资源清查油松纯林固定样地数据和理论生长模型,采用双重迭代分级算法确定固碳等级,并建立碳储量分级生长模型系:平均单株碳储量分级生长模型、林分碳储量分级生长模型、平均单株断面积分级生长模型和林分断面积分级生长模型,使用确定系数(R2)、均方根误差、相对均方根误差等指标评价模型。以最大林分碳储量连年生长量(碳汇潜力)为目标函数,以林分密度为决策变量,通过优化方法求解碳汇潜力最大时的最优林分密度。基于山西省中条山林局油松纯林小班调查数据,评估其现实碳汇量、碳汇潜力和碳汇提升空间。结果: 山西省油松纯林平均单株碳储量分级生长模型和平均单株断面积分级生长模型的R2分别为0.920和0.903,林分碳储量分级生长模型和林分断面积分级生长模型的R2分别为0.966和0.985,模型的拟合效果较好;林分碳汇潜力随林龄的增加先增加后降低、随固碳等级的增加而升高;中条山林局油松纯林单位面积的碳汇潜力平均值为1.59 t·hm?2a?1,单位面积的现实碳汇量平均值为0.97 t·hm?2a?1,单位面积的相对碳汇提升空间平均值为29.08%。结论: 本研究建立的油松纯林碳储量分级生长模型系可应用于碳储量生长预测,提出的碳汇潜力估计方法具有通用性和可靠性。建议通过林分密度调整,提升油松纯林的现实碳汇量,该方法可为油松及其他类型森林固碳增汇经营提供依据。
中图分类号:
何潇,罗光成,高文强,李海奎,曾伟生,段福军,雷相东. 山西中条山林局油松纯林碳汇潜力[J]. 林业科学, 2025, 61(5): 74-84.
Xiao He,Guangcheng Luo,Wenqiang Gao,Haikui Li,Weisheng Zeng,Fujun Duan,Xiangdong Lei. Carbon Sequestration Potentiality of Pinus tabuliformis Pure Forest in Zhongtiaoshan Forestry Bureau of Shanxi Province[J]. Scientia Silvae Sinicae, 2025, 61(5): 74-84.
表1
固定样地林分因子统计量"
变量Variables | 平均值 Mean | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation, CV (%) |
林龄 Stand age /a | 43 | 12 | 91 | 40.46 |
林分密度Stand density (N) / (trees·hm?2) | 300 | 54.37 | ||
林分密度指数Stand density index (SDI) | 628 | 56 | 1970 | 49.46 |
林分断面积Stand basal area (BA) / (m2?hm?2) | 16.65 | 0.97 | 55.49 | 56.27 |
林分平均胸径Stand mean DBH (Dg) / cm | 14.1 | 5.8 | 30.8 | 32.63 |
林分蓄积Stand volume (V) / ( m3?hm?2) | 63.77 | 2.62 | 285.83 | 67.50 |
林分碳储量Stand carbon storage (C) / (t?hm?2) | 40.93 | 1.39 | 200.33 | 72.30 |
平均单株断面积Mean individual tree basal area (MBA) /cm2 | 171.67 | 26.70 | 747.51 | 68.14 |
平均单株碳储量Mean individual tree carbon storage Cm/ kg | 43.98 | 3.79 | 255.85 | 90.80 |
表2
小班调查数据林分因子统计量"
起源 Origin | 小班数 Number of sub-compartment | 变量Variables | 平均值 Mean | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation, CV (%) |
天然 Natural | 688 | 林龄 Stand age /a | 37 | 5 | 82 | 36.33 |
林分密度Stand density (N) / (trees·hm?2) | 602 | 105 | 82.73 | |||
林分密度指数Stand density index (SDI) | 288 | 12 | 81.00 | |||
林分断面积Stand basal area (BA) / (m2?hm?2) | 7.20 | 0.17 | 32.96 | 86.73 | ||
林分平均胸径Stand mean DBH (Dg) /cm | 12.0 | 3.6 | 23.9 | 25.87 | ||
林分蓄积Stand volume (V) / (m3?hm?2) | 52.90 | 2.31 | 220.33 | 58.77 | ||
平均单株断面积Mean individual tree basal area (MBA) /cm2 | 119.67 | 10.18 | 448.63 | 51.81 | ||
人工 Plantation | 林龄 Stand age /a | 33 | 7 | 60 | 25.59 | |
林分密度Stand density (N) / (trees·hm?2) | 716 | 100 | 96.32 | |||
林分密度指数Stand density index (SDI) | 320 | 11 | 98.27 | |||
林分断面积Stand basal area (BA) / (m2?hm?2) | 7.78 | 0.14 | 81.14 | 101.81 | ||
林分平均胸径Stand mean DBH (Dg) /cm | 11.3 | 2.5 | 27.6 | 27.82 | ||
林分蓄积Stand volume (V) / (m3?hm?2) | 48.42 | 0.60 | 258.00 | 56.21 | ||
平均单株断面积Mean individual tree basal area (MBA) /cm2 | 109.26 | 4.91 | 598.28 | 56.37 |
表3
碳储量分级生长模型系的评价指标①"
模型 Model | 模型表达式 Model expression | 评价指标 Evaluation indices | ||
确定系数 Coefficient of determination (R2) | 均方根误差 Root mean square error (RMSE) | 相对均方根误差 Relative root mean square error (rRMSE) (%) | ||
平均单株碳储量分级生长模型 Carbon storage graded growth model of mean individual tree | 0.920 | 11.319 kg | 25.74 | |
平均单株断面积分级生长模型 Basal area graded growth model of mean individual tree | 0.903 | 36.667 cm2 | 21.36 | |
林分碳储量分级生长模型 Stand carbon storage graded growth model | 0.966 | 5.463 t?hm?2 | 13.35 | |
林分断面积分级生长模型 Stand basal area graded growth model | 0.985 | 1.162 m2?hm?2 | 6.98 |
表4
小班现实碳汇量、碳汇潜力、碳汇提升空间和相对碳汇提升空间的统计量"
尺度 Scale | 项目 Item | 固碳等级 Carbon sequestration class | 总体 Total | ||
l = 1 (n=507) | l = 2 (n=1 141) | l = 3 (n=2 828) | |||
单位面积 Unit area | 年现实碳汇量Realized carbon productivity increment (RCI) /(t·hm?2a?1) | 2.32±1.81 | 1.42±1.23 | 0.63±0.65 | 1.02±1.16 |
年碳汇潜力 Potential carbon productivity increment (PCI) /(t·hm?2a?1) | 3.79±1.17 | 2.49±0.53 | 0.84±0.20 | 1.59±1.16 | |
碳汇提升空间Carbon productivity gap (CPG) / (t·hm?2a?1) | 1.47±1.90 | 1.07±1.32 | 0.21±0.67 | 0.57±1.17 | |
相对碳汇提升空间 Relative carbon productivity gap (RCPG) (%) | 37.19±51.6 | 41.22±53.87 | 22.73±81.75 | 29.08±73.04 | |
森林经营单位 Forest management unit | 年总现实碳汇量 Total realized carbon productivity increment (RCI) / (t·a?1) | 11 143 | 18 302 | 19 474 | 48 919 |
年总碳汇潜力Total potential carbon productivity increment (PCI) / (t·a?1) | 20 087 | 33 767 | 25 072 | 78 925 | |
碳汇提升空间Carbon productivity gap (CPG) / (t·a?1) | 8 944 | 15 465 | 5 598 | 30 006 | |
相对碳汇提升空间Relative carbon productivity gap (RCPG) (%) | 44.53 | 45.80 | 22.33 | 38.02 |
表5
不同起源和龄组的小班相对碳汇提升空间(RCPG)的统计量"
项目 Item | 分组 Group | 单位面积 Unit area | 森林经营单位 Forest management unit |
起源 Origin | 天然林Natural forests | 46.599±55.322 | 49.893 |
人工林Plantations | 25.891±75.382 | 35.858 | |
龄组 Age group | 幼龄林Young forests | 44.687±59.423 | 43.350 |
中龄林Middle-aged forests | 20.340±79.411 | 31.539 | |
近熟林Near-mature forests | 49.041±46.564 | 57.465 | |
成熟林Mature forests | 61.272±25.492 | 62.712 | |
过熟林Over-mature forests | 85.805 | 85.805 |
曹 磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型. 林业科学研究, 2020, 33 (5): 61- 67. | |
Cao L, Liu X T, Li H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong. Forest Research, 2020, 33 (5): 61- 67. | |
陈治中, 昝 梅, 杨雪峰, 等. 新疆森林植被碳储量预测研究. 生态环境学报, 2023, 32 (2): 226- 234. | |
Chen Z Z, Zan M, Yang X F, et al. Prediction of forest vegetation carbon storage in Xinjiang. Ecology and Environment Sciences, 2023, 32 (2): 226- 234. | |
付 晓, 张煜星, 王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学, 2022, 58 (2): 32- 41. | |
Fu X, Zhang Y X, Wang X J. Prediction of forest biomass carbon pool and carbon sink potential in China before 2060. Scientia Silvae Sinicae, 2022, 58 (2): 32- 41. | |
孟京辉. 自然稀疏方程不同拟合方法的对比研究. 北京林业大学学报, 2019, 41 (12): 58- 68.
doi: 10.12171/j.1000-1522.20190434 |
|
Meng Jinghui. A comparison of different methods for fitting the self-thinning equation. Journal of Beijing Forestry University, 2019, 41 (12): 58- 68.
doi: 10.12171/j.1000-1522.20190434 |
|
国家林业局. 2014. 立木生物量模型及碳计量参数——油松(LY/T 2260−2014). 北京: 中国标准出版社. | |
State Forestry Administration. 2014. Tree biomass models and related parameters to carbon accounting for Pinus tabuliformis (LY/T 2260−2014). Beijing: China Standard Press. [in Chinese] | |
国家林业和草原局. 2020. 森林资源连续清查技术规程(GB/T 38590-2020). 北京: 中国标准出版社. | |
National Forestry and Grassland Administration. 2020. Technical regulations for continuous forest inventory (GB/T 38590-2020). Beijing: China Standard Press. [in Chinese] | |
国家林业和草原局. 2023. 造林技术规程(GB/T 15776-2023). 北京: 中国标准出版社. | |
National Forestry and Grassland Administration. 2023. Technical regulation for forestation (GB/T 15776−2023). Beijing: China Standard Press. [in Chinese] | |
何 潇, 雷相东, 段光爽, 等. 气候变化对落叶松人工林生物量生长的影响模拟. 南京林业大学学报(自然科学版), 2023a, 47 (3): 120- 128. | |
He X, Lei X D, Duan G S, et al. Modelling the effects of climate change on stand biomass growth of larch plantations. Journal of Nanjing Forestry University(Natural Science Edition), 2023a, 47 (3): 120- 128. | |
何 潇, 李海奎, 张逸如, 等. 天然次生林碳储量生长模型与固碳能力驱动力研究. 北京林业大学学报, 2023b, 45 (1): 1- 10. | |
He X, Li H K, Zhang Y R, et al. Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests. Journal of Beijing Forestry University, 2023b, 45 (1): 1- 10. | |
何 潇, 徐奇刚, 雷相东. 气候敏感的落叶松人工林林分生物量模型研究. 林业科学研究, 2021a, 34 (6): 20- 27. | |
He X, Xu Q G, Lei X D. Climate-sensitive stand biomass model for Larix spp. plantation. Forest Research, 2021a, 34 (6): 20- 27. | |
何 潇, 周超凡, 雷相东, 等. 长白落叶松人工林林分碳储量生长模型系研究. 北京林业大学学报, 2021b, 43 (11): 1- 10. | |
He X, Zhou C F, Lei X D, et al. Stand carbon stock growth model system for Larix olgensis plantation. Journal of Beijing Forestry University, 2021b, 43 (11): 1- 10. | |
黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响. 水土保持学报, 2015, 29 (6): 184- 190. | |
Huang X Q, Xin Z B, Zhao Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area. Journal of Soil and Water Conservation, 2015, 29 (6): 184- 190. | |
简尊吉, 朱建华, 王小艺, 等. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学, 2023, 59 (3): 12- 20.
doi: 10.11707/j.1001-7488.LYKX20220666 |
|
Jian Z J, Zhu J H, Wang X Y, et al. Research progress and the enhancement challenges and pathways of carbon sinks in China’s terrestrial ecosystems. Scientia Silvae Sinicae, 2023, 59 (3): 12- 20.
doi: 10.11707/j.1001-7488.LYKX20220666 |
|
雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用. 林业科学, 2018, 54 (12): 116- 126.
doi: 10.11707/j.1001-7488.20181213 |
|
Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment. Scientia Silvae Sinicae, 2018, 54 (12): 116- 126.
doi: 10.11707/j.1001-7488.20181213 |
|
李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展. 中国地质调查, 2021, 8 (4): 79- 86. | |
Li H K. Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutral vision. Geological Survey of China, 2021, 8 (4): 79- 86. | |
李海奎, 法 蕾. 基于分级的全国主要树种树高-胸径曲线模型. 林业科学, 2011, 47 (10): 83- 90.
doi: 10.11707/j.1001-7488.20111013 |
|
Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method. Scientia Silvae Sinicae, 2011, 47 (10): 83- 90.
doi: 10.11707/j.1001-7488.20111013 |
|
唐守正, 郎奎建, 李海奎. 2009. 统计和生物数学模型计算(ForStat教程). 北京: 科学出版社. | |
Tang S Z, Lang K J, Li H K. 2009. Statistics and computation of biomathematical models (ForStat textbook). Beijing: Science Press. [in Chinese] | |
王柏昌, 韩媛媛, 孙洪刚, 等. 2024. 杉阔混交林自疏边界线研究. 林业科学研究, 37(5): 1−12. | |
Wang B C, Han Y Y, Sun H G, et al. 2024. Self-thinning line of mixed forests of Cunninghamia lanceolata and broad-leaved tree species. Forest Research, 37(5): 1−12. [in Chinese] | |
肖文发, 朱建华, 曾立雄, 等. 森林碳汇助力碳中和的几点认识. 林业科学, 2023, 59 (3): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220681 |
|
Xiao W F, Zhu J H, Zeng L X, et al. Several perspectives on forest carbon sink for promoting carbon neutrality. Scientia Silvae Sinicae, 2023, 59 (3): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220681 |
|
徐 冰, 郭兆迪, 朴世龙, 等. 2000~2050年中国森林生物量碳库: 基于生物量密度与林龄关系的预测. 中国科学: 生命科学, 2010, 40 (7): 587- 594.
doi: 10.1360/zc2010-40-7-587 |
|
Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Scientia Sinica Vitae, 2010, 40 (7): 587- 594.
doi: 10.1360/zc2010-40-7-587 |
|
于贵瑞, 朱剑兴, 徐 丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案. 中国科学院院刊, 2022, 37 (4): 490- 501. | |
Yu G R, Zhu J X, Xu L, et al. Technological approaches to enhance ecosystem carbon sink in China: nature-based solutions. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 490- 501. | |
朱光玉, 胡 松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型. 南京林业大学学报(自然科学版), 2018, 42 (2): 155- 162. | |
Zhu G Y, Hu S, Fu L Y. Basal area growth model for Oak natural forest in Hunan Province based on dummy variable. Journal of Nanjing Forestry University(Natural Science Edition), 2018, 42 (2): 155- 162. | |
朱建华, 田 宇, 李 奇, 等. 中国森林生态系统碳汇现状与潜力. 生态学报, 2023, 43 (9): 3442- 3457. | |
Zhu J H, Tian Y, Li Q, et al. The current and potential carbon sink in forest ecosystem in China. Acta Ecologica Sinica, 2023, 43 (9): 3442- 3457. | |
Bukoski J J, Cook-Patton S C, Melikov C, et al. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications, 2022, 13 (1): 4206.
doi: 10.1038/s41467-022-31380-7 |
|
Cheng F S, Tian J X, He J Y, et al. The spatial and temporal distribution of Chinaʼs forest carbon. Frontiers in Ecology and Evolution, 2023, 11, 1110594.
doi: 10.3389/fevo.2023.1110594 |
|
Cheng Y Y, Huang M Y, Lawrence D M, et al. Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Science Advances, 2022, 8 (18): eabm8237.
doi: 10.1126/sciadv.abm8237 |
|
Crockett E T H, Atkins J W, Guo Q F, et al. Structural and species diversity explain aboveground carbon storage in forests across the United States: evidence from gedi and forest inventory data. Remote Sensing of Environment, 2023, 295, 113703.
doi: 10.1016/j.rse.2023.113703 |
|
Fotis A T, Murphy S J, Ricart R D, et al. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. The Journal of Ecology, 2018, 106 (2): 561- 570.
doi: 10.1111/1365-2745.12847 |
|
Fu L, Sharma R, Zhu G, et al. A basal area increment-based approach of site productivity evaluation for multi-aged and mixed forests. Forests, 2017, 8 (4): 119.
doi: 10.3390/f8040119 |
|
He N P, Wen D, Zhu J X, et al. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Global Change Biology, 2017, 23 (4): 1575- 1584.
doi: 10.1111/gcb.13479 |
|
Hennigar C, Weiskittel A, Allen H L, et al. Development and evaluation of a biomass increment based index for site productivity. Canadian Journal of Forest Research, 2017, 47 (3): 400- 410.
doi: 10.1139/cjfr-2016-0330 |
|
Lei X D, Yu L, Hong L X. Climate-sensitive integrated stand growth model (CS-ISGM) of Changbai larch (Larix Olgensis) plantations. Forest Ecology and Management, 2016, 376, 265- 275.
doi: 10.1016/j.foreco.2016.06.024 |
|
Li H K, Zhao P X. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional Scale. Forest Ecology and Management, 2013, 289, 153- 163.
doi: 10.1016/j.foreco.2012.10.002 |
|
Liu L, Zeng F P, Song T Q, et al. Stand structure and abiotic factors modulate Karst forest biomass in Southwest China. Forests, 2020, 11 (4): 443.
doi: 10.3390/f11040443 |
|
Liu X Z, Duan G S, Chhin S, et al. Evaluation of potential versus realized site productivity of Larix principis-rupprechtii plantations across Northern China. Forest Ecology and Management, 2021, 479, 118608.
doi: 10.1016/j.foreco.2020.118608 |
|
Peng B, Zhou Z Y, Cai W X, et al. Maximum potential of vegetation carbon sink in Chinese forests. Science of the Total Environment, 2023, 905, 167325.
doi: 10.1016/j.scitotenv.2023.167325 |
|
Reineke L H. Perfecting a stand−density index for even−aged forest. Journal of Agricultural Research, 1933, 46 (7): 627- 638. | |
Reich P B, Luo Y, Bradford J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences, 2014, 111 (38): 13721- 13726.
doi: 10.1073/pnas.1216053111 |
|
Roxburgh S H, Wood S W, Mackey B G, et al. Assessing the carbon sequestration potential of managed forests: a case study from temperate Australia. Journal of Applied Ecology, 2006, 43 (6): 1149- 1159.
doi: 10.1111/j.1365-2664.2006.01221.x |
|
Tian H L, Zhu J H, He X, et al. Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale forest inventory data in China. Forest Ecosystems, 2022, 9, 100037.
doi: 10.1016/j.fecs.2022.100037 |
|
Yu Z, Ciais P, Piao S, et al. Forest expansion dominates China’s land carbon sink since 1980. Nature Communications, 2022, 13 (1): 5374.
doi: 10.1038/s41467-022-32961-2 |
|
Zhang X Q, Xu D Y. Potential carbon sequestration in Chinaʼs forests. Environmental Science & Policy, 2003, 6 (5): 421- 432. |
[1] | 吕梦燕,任军,张立民,陈思羽,赵佳丽,鲁佳乐,孔晨,戴维,金桂香. 基于光合指标的平欧杂种榛扦插苗根系生长发育评价模型[J]. 林业科学, 2025, 61(3): 100-107. |
[2] | 曾伟生,蒲莹,杨学云,易善军. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析[J]. 林业科学, 2023, 59(3): 21-30. |
[3] | 赵厚本,周光益,李兆佳,邱治军,吴仲民,王旭. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23-31. |
[4] | 张会儒,雷相东,李凤日. 中国森林经理学研究进展与展望[J]. 林业科学, 2020, 56(9): 130-142. |
[5] | 胡松,朱光玉,陈振雄,卢侃,黄朗,刘卓. 基于林层划分的湖南栎类天然次生林断面积生长模型[J]. 林业科学, 2020, 56(9): 184-192. |
[6] | 张英凯,刘鹏举,刘长春,任怡. 基于空间聚类的杉木生长预测方法[J]. 林业科学, 2019, 55(11): 137-144. |
[7] | 赵菡, 雷渊才, 符利勇. 江西省不同立地等级的马尾松林生物量估计和不确定性度量[J]. 林业科学, 2017, 53(8): 81-93. |
[8] | 祖笑锋, 倪成才, Gorden Nigh, 覃先林. 基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程[J]. 林业科学, 2015, 51(3): 25-33. |
[9] | 郑聪慧;贾黎明;段劼;魏松坡;孙操稳;贾振虎;卢福顺;王志勇;崔向东. 华北地区栓皮栎天然次生林地位指数表的编制[J]. , 2013, 49(2): 79-85. |
[10] | 曾伟生;唐守正. 一个新的通用性相对生长生物量模型[J]. 林业科学, 2012, 48(1): 48-52. |
[11] | 向玮;雷相东;洪玲霞;孙建军;王培珍. 落叶松云冷杉林矩阵生长模型及多目标经营模拟[J]. 林业科学, 2011, 47(6): 77-87. |
[12] | 胡小宁;赵忠 袁志发 李剑 郭满才 王迪海. 黄土高原刺槐细根生长模型的建立[J]. 林业科学, 2010, 46(4): 126-132. |
[13] | 段杰 马履一 贾黎明 侯雅琴 公宁宁 . 北京低山地区油松人工林立地指数表的编制及应用[J]. 林业科学, 2009, 12(3): 7-12. |
[14] | 陈先刚;; 张一平 詹 卉. 云南退耕还林工程林木生物质碳汇潜力*[J]. 林业科学, 2008, 44(5): 24-30. |
[15] | 雷相东 常敏 陆元昌 赵天忠. 虚拟树木生长建模及可视化研究综述[J]. 林业科学, 2006, 42(11): 123-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||