林业科学 ›› 2025, Vol. 61 ›› Issue (5): 61-73.doi: 10.11707/j.1001-7488.LYKX20240577
庄鹏1,2,彭金根2,刘思佳2,白宇清3,张露文1,2,李荣生1,杨锦昌1,谢利娟2,蔡洪月2,*()
收稿日期:
2024-10-01
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
蔡洪月
E-mail:caihongyue@szpu.edu.cn
基金资助:
Peng Zhuang1,2,Jingen Peng2,Sijia Liu2,Yuqing Bai3,Luwen Zhang1,2,Rongsheng Li1,Jinchang Yang1,Lijuan Xie2,Hongyue Cai2,*()
Received:
2024-10-01
Online:
2025-05-20
Published:
2025-05-24
Contact:
Hongyue Cai
E-mail:caihongyue@szpu.edu.cn
摘要:
目的: 对生长于深圳市梧桐山的不同生长势的毛棉杜鹃根系内生真菌类群和多样性进行分析,筛选出具有代表性和对毛棉杜鹃生长有潜在积极作用的内生真菌,为毛棉杜鹃内生真菌资源开发利用提供参考。方法: 针对不同生长势的毛棉杜鹃根系,通过扩增子ITS高通量测序和组织分离培养法,分析根系内生真菌类群和多样性。结果: 1) 通过毛棉杜鹃根系真菌的扩增子ITS高通量测序分析,鉴定获得生长势好的样本183 942条序列,注释出11门231种真菌,778个操作分类单元(OTU);鉴定获得生长势差的样本190 918条序列,注释出10门202种真菌,1 009个OTU,担子菌门和子囊菌门是2种生长势中的主导菌门。2) α多样性分析显示:生长势好的毛棉杜鹃根系真菌群落的多样性高于生长势差的毛棉杜鹃;PcoA多样性分析表明,相同生长势的群落间相似性高,而不同生长势的群落间存在差异。3) 功能预测分析显示:在生长势好的毛棉杜鹃根系真菌群落中,共生营养型真菌占比近60%;而在生长势差的群落中,腐生和共生营养型真菌各占约40%。4) 基于组织分离培养法共鉴定出172种内生真菌,子囊菌门是2种生长势毛棉杜鹃根系真菌的主导菌门;生长势好、差的植株根系分别鉴定出98、109种真菌;从生长势好的毛棉杜鹃中分离出12株代表性真菌,生长势差的分离出6株代表性真菌;典型的杜鹃花类菌根真菌有树粉孢属类真菌和欧石楠无柄盘真菌,仅在生长势好的毛棉杜鹃根系中分离出。结论: 扩增子ITS高通量测序技术和组织分离技术揭示了不同生长势毛棉杜鹃根系内生真菌群落的多样性存在差异,相较于生长势差的植株,生长势好的毛棉杜鹃根系中具有物种丰度更高和群落结构分布更加均衡的内生真菌群落,其中优势真菌群落树粉孢属、无柄盘菌属的种类和数量较多。本研究证实毛棉杜鹃根系微生物生态与植物生长势之间的潜在联系,为进一步探索植物-微生物相互作用提供了新视角。
中图分类号:
庄鹏,彭金根,刘思佳,白宇清,张露文,李荣生,杨锦昌,谢利娟,蔡洪月. 不同生长势毛棉杜鹃根部内生真菌多样性差异[J]. 林业科学, 2025, 61(5): 61-73.
Peng Zhuang,Jingen Peng,Sijia Liu,Yuqing Bai,Luwen Zhang,Rongsheng Li,Jinchang Yang,Lijuan Xie,Hongyue Cai. Differences in Root Endophytic Fungal Diversity of Rhododendron moulmainense with Different Growth Potentials[J]. Scientia Silvae Sinicae, 2025, 61(5): 61-73.
表2
不同生长势毛棉杜鹃根系真菌测序序列结果统计"
生长势 Growth potential | 样株序号 Sample plant No. | 原始序列条数 Raw sequence reads | 过滤后序列条数 Clean sequence reads | 有效序列条数 Effective sequence reads | 序列平均长度 Sequence average length/bp | 有效序列占比 Proportion of effective sequence reads(%) |
好 Good | g1 | 64 687 | 64 687 | 62 252 | 627 | 96.24 |
g2 | 61 223 | 61 222 | 60 618 | 681 | 99.01 | |
g3 | 61 809 | 61 805 | 61 072 | 613 | 98.81 | |
小计 Subtotal | 187 719 | 187 714 | 183 942 | — | — | |
差 Poor | p4 | 57 260 | 57 259 | 56 478 | 671 | 98.63 |
p5 | 68 177 | 68 177 | 67 950 | 611 | 99.67 | |
p6 | 66 634 | 66 634 | 66 490 | 618 | 99.78 | |
小计 Subtotal | 192 071 | 192 070 | 190 918 | — | — |
表3
不同生长势毛棉杜鹃根系真菌α多样性"
生长势 Growth potential | 样株序号 Sample plant No. | 基于丰度的覆盖估计值 Abundance based coverage estimator | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香农指数 Shannon -Wiener index | 覆盖率 Coverage |
好 Good | g1 | 517.87 | 517.07 | 0.93 | 5.49 | 0.9 995 |
g2 | 296.81 | 289.14 | 0.91 | 5.51 | 0.9 998 | |
g3 | 439.65 | 418.00 | 0.98 | 6.96 | 0.9 996 | |
差 Poor | p4 | 351.81 | 355.00 | 0.77 | 4.58 | 0.9 999 |
p5 | 516.89 | 539.14 | 0.86 | 4.42 | 0.9 994 | |
p6 | 506.34 | 520.25 | 0.91 | 4.93 | 0.9 995 |
表4
不同生长势毛棉杜鹃根系真菌物种类型数目"
生长势 Growth potential | 样株序号 Sample plant No. | 操作分类单元 Operational taxonomic unit | 界 Kindom | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species |
好 Good | g1 | 498 | 1 | 11 | 30 | 67 | 125 | 197 | 231 |
g2 | 284 | 1 | 10 | 22 | 51 | 82 | 119 | 139 | |
g3 | 372 | 1 | 11 | 26 | 58 | 104 | 160 | 183 | |
小计 Subtotal | 778 | 1 | 11 | 30 | 67 | 125 | 197 | 231 | |
差 Poor | p4 | 348 | 1 | 10 | 27 | 53 | 96 | 141 | 164 |
p5 | 502 | 1 | 10 | 27 | 62 | 112 | 169 | 202 | |
p6 | 494 | 1 | 10 | 28 | 59 | 103 | 156 | 174 | |
小计 Subtotal | 1 009 | 1 | 10 | 28 | 62 | 112 | 169 | 202 | |
总计Total | 1 371 | 1 | 12 | 37 | 97 | 186 | 354 | 466 |
表5
组织分离代表性内生真菌菌株形态特征"
菌株编号 Strain No. | 菌株正面颜色 Surface color of the strain | 菌株背面颜色 Reverse color of the strain | 菌株质地 Texture of the strain | 菌株直径 Colony diameter of the Strain/cm | 菌株形状 Colony morphology |
gf95 | 蜡黄色 Waxen yellow | 蜡黄色 Waxen yellow | 绒毛状Velvety | 2.3 | 圆、平铺致密、中央隆起 Circular, flat and densely compact with an umbonate center |
gf151 | 乳白色 Milky white | 橙黄色 Orange yellow | 绒毡状 Felt like or velvety | 1.9 | 近椭圆、中央隆起、平铺致密 Subelliptical, umbonate, and flat with a densely compact structure |
gf147 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 1.6 | 圆、平铺致密、中央隆起 Circular, flat and densely compact with an umbonate center |
gf130 | 乳白色、灰色 Milky white and gray | 乳白色、灰色 Milky white and gray | 绒毡状 Felt like or velvety | 2 | 近椭圆、平铺致密、边缘菌丝辐射状 Subelliptical, flat and densely compact with radiating hyphae at the margins |
gf114 | 乳白色、灰色 Milky white and gray | 乳白色、灰色 Milky white and gray | 绒毡状 Felt like or velvety | 2.4 | 近椭圆、平铺致密 Subelliptical, flat, and densely compact |
gf170 | 蓝色 Blue | 灰色 Gray | 绒毡状 Felt like or velvety | 2.4 1.5 | 近椭圆、平铺致密 Subelliptical, flat, and densely compact |
gf149 | 白色 White | 浅黄色 Light yellow | 绒毡状 Felt like or velvety | 1.9 | 近椭圆、平铺致密 Subelliptical, flat, and densely compact |
gf70 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 7.4 | 圆、平铺致密、边缘辐射状 Circular, flat and densely compact with radiating margins |
gf129 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 2 | 近椭圆、平铺致密、中间稍隆起 Subelliptical, flat and densely compact with a slightly raised center |
gf59 | 乳白色、灰色 Milky white and gray | 乳白色、灰色 Milky white and gray | 绒毡状 Felt like or velvety | 2.4 | 近椭圆、平铺致密、辐射状沟 Subelliptical, flat and densely compact with radiating grooves |
gf85 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 2.1 | 近椭圆、平铺致密、辐射状沟 Subelliptical, flat and densely compact with radiating grooves |
gf184 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 7.7 | 圆、平铺致密 Circular, flat, and densely compact |
pf135 | 白色、棕色 White and brown | 棕色 Brown | 绒毡状 Felt like or velvety | 7.5 | 圆、平铺致密 Circular, flat, and densely compact |
pf53 | 灰色 Gray | 灰色 Gray | 绒毡状 Felt like or velvety | 2.4 | 近圆、平铺致密 Subcircular, flat, and densely compact |
pf83 | 蓝色 Blue | 橙黄色 Orange yellow | 绒毡状 Felt like or velvety | 3.2 | 圆、平铺致密 Circular, flat, and densely compact |
pf153 | 乳白色 Milky white | 橙黄色 Orange yellow | 蜡质状Waxy | 5.1 | 近圆、平铺致密、边缘辐射状沟 Subcircular, flat and densely compact with radial grooves at the margins |
pf154 | 棕色 Brown | 棕色 Brown | 绒毡状 Felt like or velvety | 8.3 | 圆、平铺致密 Circular, flat, and densely compact |
pf220 | 乳白色、棕色 Milky white and brown | 棕色 Brown | 绒毡状 Felt like or velvety | 8.3 | 圆、平铺致密 Circular, flat, and densely compact |
表6
组织分离代表性内生真菌菌株rDNA ITS序列Blast结果"
菌株编号 Strains No. | 相似率 Similarity rate (%) | 相似菌株GenBank登录号 Similar strains GenBank accession number | GenBank中相似菌株 Similar strains in GenBank |
gf95 | 99.10 | OM729675.1 | Helotiales sp. |
gf151 | 98.09 | OP895772.1 | 粒毛盘菌Lachnum virgineum |
gf147 | 98.15 | MN148673.1 | 粒毛盘菌Lachnum virgineum |
gf130 | 99.81 | HM208721.1 | Oidiodendron sp. shylm110 |
gf114 | 100.00 | HM208723.1 | Oidiodendron sp. shylm125 |
gf170 | 99.65 | GU565147.1 | Penicillium sp. GZU-BCECYN62-5 |
gf149 | 98.19 | MN961135.1 | 欧石楠无柄盘菌Pezicula ericae |
gf70 | 98.58 | KY979197.1 | 欧石楠无柄盘菌Pezicula ericae |
gf129 | 99.25 | KU550121.1 | uncultured oidiodendron |
gf59 | 99.46 | HM208723.1 | Oidiodendron sp. shylm125 |
gf85 | 99.82 | HM208723.1 | Oidiodendron sp. shylm125 |
gf184 | 98.75 | KY979197.1 | 欧石楠无柄盘菌Pezicula ericae |
pf135 | 99.82 | OL354998.1 | Helotiales sp. |
pf53 | 98.31 | OP895772.1 | 粒毛盘菌Lachnum virgineum |
pf83 | 99.83 | JF439496.1 | Penicillium sp. F02 |
pf153 | 99.82 | OL354998.1 | Helotiales sp. |
pf154 | 99.64 | OL354998.1 | Helotiales sp. |
pf220 | 99.82 | OL354998.1 | Helotiales sp. |
谌端玉, 欧 静, 王丽娟, 等. 干旱胁迫对接种ERM真菌桃叶杜鹃幼苗叶绿素含量及荧光参数的影响. 南方农业学报, 2016, 47 (7): 1164- 1170.
doi: 10.3969/j:issn.2095-1191.2016.07.1164 |
|
Chen D Y, Ou J, Wang L J, et al. Effects of drought stress on chlorophyll content and fluorescence parameters of Rhododendron annae Franch. seedlings inoculated with ERM fungi. Journal of Southern Agriculture, 2016, 47 (7): 1164- 1170.
doi: 10.3969/j:issn.2095-1191.2016.07.1164 |
|
陈美琪, 王 兴, 黎俊彦, 等. 基于高通量测序和组织分离法的虎耳草内生真菌多样性分析及其抗氧化活性研究. 中草药, 2023, 54 (6): 1924- 1934.
doi: 10.7501/j.issn.0253-2670.2023.06.025 |
|
Chen M Q, Wang X, Li J Y, et al. Study of endophytic fungi diversity of Saxifraga stolonifera based on high-throughput sequencing method and tissue isolation method and their antioxidant activities. Chinese Traditional and Herbal Drugs, 2023, 54 (6): 1924- 1934.
doi: 10.7501/j.issn.0253-2670.2023.06.025 |
|
付亚娟, 张江丽, 侯晓强. 大花杓兰根际与非根际土壤真菌多样性的高通量测序分析. 西北农业学报, 2019, 28 (2): 253- 259.
doi: 10.7606/j.issn.1004-1389.2019.02.013 |
|
Fu Y J, Zhang J L, Hou X Q. Comparative analysis of fungi diversity in rizospheric and non rhizospheric soil from Cypripedium macranthum estimated via high throughput sequencing. Acta Agriculturae Boreali occidentalis Sinica, 2019, 28 (2): 253- 259.
doi: 10.7606/j.issn.1004-1389.2019.02.013 |
|
龚金玉, 彭金根, 谢利娟, 等. 深圳梧桐山不同树势毛棉杜鹃根际土壤微生物多样性分析. 林业科学, 2021, 57 (11): 190- 200.
doi: 10.11707/j.1001-7488.20211119 |
|
Gong J Y, Peng J G, Xie L J, et al. Microbial diversity in rhizosphere soil of Rhododendron moulmainense with different tree potential in Wutong mountain of Shenzhen. Scientia Silvae Sinicae, 2021, 57 (11): 190- 200.
doi: 10.11707/j.1001-7488.20211119 |
|
郭 超. 2023. 野生越橘菌根真菌分离鉴定及互作促生研究. 哈尔滨: 东北林业大学. | |
Guo C. 2023. Isolation and identification and interaction promotion of growth research of mycorrhizal fungi from wild lingonberry. Harbin: Northeast Forestry University. [in Chinese] | |
胡 蝶, 熊 琳, 薛雅文, 等. 基于传统培养法和高通量测序技术分析新疆红枣中真菌多样性. 食品安全质量检测学报, 2022, 13 (24): 8101- 8108.
doi: 10.3969/j.issn.2095-0381.2022.24.spaqzljcjs202224033 |
|
Hu D, Xiong L, Xue Y W, et al. Analysis of the fungal diversity in Ziziphus jujuba mill. from Xinjiang using traditional culture method and high-throughput sequencing. Journal of Food Safety & Quality, 2022, 13 (24): 8101- 8108.
doi: 10.3969/j.issn.2095-0381.2022.24.spaqzljcjs202224033 |
|
黄 滔, 廖菊阳, 唐 红. 毛棉杜鹃地理分布及其开发利用. 湖南环境生物职业技术学院学报, 2010, 16 (2): 1- 4. | |
Huang T, Liao J Y, Tang H. Geographical distribution and utilization of Rhododendron Moulmainense in China. Journal of Hunan Ecological Science, 2010, 16 (2): 1- 4. | |
孔 鑫, 王剑峰, 熊 涵 等. 杜鹃属植物育种、繁殖及逆境胁迫的研究进展. 分子植物育种, 2022, 20 (20): 6918- 6925. | |
Kong X, Wang J F, Xiong H, et al. Research progress on breeding, reproductin and adversity stress of species of Rhododendron. Molecular Plant Breeding, 2022, 20 (20): 6918- 6925. | |
李文华, 贾彩娟. 2012. 毛棉杜鹃繁殖研究. 吉林农业. 23(2): 164-165. | |
Li W H, Jia C J. 2012. Breeding of Rhododendron moulmainense. Agriculture of Jilin. 23(2): 164-165. [in Chinese] | |
廖映辉, 黄彩微, 史佑海, 等. 海南霸王岭毛棉杜鹃根部真菌的多样性. 江苏农业科学, 2016, 44 (6): 432- 437. | |
Liao Y H, Huang C W, Shi Y H, et al. The diversity of fungal communities in the roots of Rhododendron moulmainense in Bawang ridge, Hainan. Jiangsu Agricultural Sciences, 2016, 44 (6): 432- 437. | |
刘永金, 徐 滔, 袁 银, 等. 接种福廷瓶头霉对毛棉杜鹃幼苗共生效应及其对加磷的响应. 安徽农业科学, 2015, 43 (34): 225- 228.
doi: 10.3969/j.issn.0517-6611.2015.34.084 |
|
Liu Y J, Xu T, Yuan Y, et al. Symbiotic effect and responses to adding phosphorus to Rhododendron moulmainense seedling after inoculated with phialocephala fortinii. Journal of Anhui Agricultural Sciences, 2015, 43 (34): 225- 228.
doi: 10.3969/j.issn.0517-6611.2015.34.084 |
|
刘 亚, 唐光大, 洪文君, 等. 深圳梧桐山毛棉杜鹃根内真菌的分离与鉴定. 安徽农业科学, 2015, 43 (29): 9- 12.
doi: 10.3969/j.issn.0517-6611.2015.29.004 |
|
Liu Y, Tang G D, Hong W J, et al. Isolation and identification of fungi from roots of Rhododendron moulmainense of Wutong mountain, Shenzhen. Journal of Anhui Agricultural Sciences, 2015, 43 (29): 9- 12.
doi: 10.3969/j.issn.0517-6611.2015.29.004 |
|
刘 亚, 王 盼, 周钰鸿, 等. 浙江大盘山华顶杜鹃菌根真菌的分离和鉴定. 浙江林业科技, 2019, 39 (1): 1- 8.
doi: 10.3969/j.issn.1001-3776.2019.01.001 |
|
Liu Y, Wang P, Zhou Y H, et al. Isolation and identification of mycorrhizal fungi in Rhododendron huadingense root in Zhejiang dapanshan national nature reserve. Journal of Zhejiang Forestry Science and Technology, 2019, 39 (1): 1- 8.
doi: 10.3969/j.issn.1001-3776.2019.01.001 |
|
刘振华. 2011. 杜鹃花菌根真菌分离鉴定及多样性分析. 北京: 中国林业科学研究院. | |
Liu Z H. 2011. Isolation identification and diversity anaiysis of rhododendron plants mycorrhizal fungi. Beijing: Chinese Academy of Forestry. [in Chinese] | |
毛光瑞, 翟梅枝, 史冠昭, 等. 陕西不同生境核桃内生真菌多样性. 微生物学通报, 2016, 43 (6): 1262- 1273. | |
Mao G R, Zhai M Z, Shi G Z, et al. Diversity of fungat endophytes from Juglans regia under different habitats in Shaanxi. Microbiology China, 2016, 43 (6): 1262- 1273. | |
欧 静, 刘仁阳, 张仁嫒, 等. 杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响. 浙江农林大学学报, 2014, 31 (6): 926- 931.
doi: 10.11833/j.issn.2095-0756.2014.06.015 |
|
Ou J, Liu R Y, Zhang R Y, et al. Nitrate reductase activity and n absorption of Rhododendron annae seedlings with ericoid mycorrhiza inoculation. Journal of Zhejiang A & F University, 2014, 31 (6): 926- 931.
doi: 10.11833/j.issn.2095-0756.2014.06.015 |
|
彭金根, 龚金玉, 范玉海, 等. 毛棉杜鹃根际与非根际土壤微生物群落多样性. 林业科学, 2022, 58 (2): 89- 99. | |
Peng J G, Gong J Y, Fan Y H, et al. Diversity of soil microbial communities in rhizosphere and non rhizosphere of Rhododendron moulmainense. Scientia Silvae Sinicae, 2022, 58 (2): 89- 99. | |
任 玮, 杨 韧, 张永新, 等. 中国中部太白山不同海拔杜鹃兰根部内生真菌多样性. 菌物学报, 2021, 40 (5): 992- 1007. | |
Ren W, Yang R, Zhang Y X, et al. Diversity of endophytic fungi in the roots of Cremastra appendiculata (Orchidaceae) at different altitudes in Taibaishan nature reserve, central China. Mycosystema, 2021, 40 (5): 992- 1007. | |
唐 燕, 李 敏, 马焕成, 等. 云南轿子山腋花杜鹃菌根多样性研究. 云南大学学报(自然科学版), 2019, 41 (5): 1062- 1072.
doi: 10.7540/j.ynu.20180844 |
|
Tang Y, Li M, Ma H C, et al. Mycorrhizal diversity of Rhododendron racemosum Franch. in Yunnan Jiaozi mountain. Journal of Yunnan University (Natural Sciences Edition), 2019, 41 (5): 1062- 1072.
doi: 10.7540/j.ynu.20180844 |
|
王 晔, 李 航, 汤 宇, 等. 浙江镜湖湿地3种菌根植物根部真菌群落多样性及对金属元素富集能力的研究. 植物研究, 2019, 39 (6): 883- 889.
doi: 10.7525/j.issn.1673-5102.2019.06.011 |
|
Wang Y, Li H, Tang Y, et al. Fungal community and their metal accumulation ability of three mycorrhizal plants in Jinghu wetland, Zhejing. Bulletin of Botanical Research, 2019, 39 (6): 883- 889.
doi: 10.7525/j.issn.1673-5102.2019.06.011 |
|
汪娅琴. 2021. 深色有隔内生真菌和菌根菌混合接种对蓝莓幼苗促生抗旱的影响. 贵阳: 贵州大学. | |
Wang Y Q. 2021. Effects of mixed inoculation of dark septate endophytes and mycorrhizal fungi on growth promotion and drought resistance of blueberry seedlings. Guiyang: Guizhou University. [in Chinese] | |
吴佳育. 2022. 杜鹃花类菌根真菌和深色有隔内生真菌分离及其相互作用初步研究. 哈尔滨: 东北林业大学. | |
Wu J Y. 2022. Preliminary study on the isolation of ericoid mycorrhizal fungi and dark septate endophytes and their interaction. Harbin: Northeast Forestry University. [in Chinese] | |
吴微微, 韩 雪, 王继朋, 等. 种植年限对枳壳根际微生物群落和土壤性质的影响. 土壤学报, 2024, 61 (6): 1729- 1740.
doi: 10.11766/trxb202308140224 |
|
Wu W W, Han X, Wang J P, et al. Alterations with plantation years of fructus aurantii on rhizosphere microbiome and soil properties. Acta Pedologica Sinica, 2024, 61 (6): 1729- 1740.
doi: 10.11766/trxb202308140224 |
|
夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价. 微生物学报, 2014, 54 (12): 1489- 1499. | |
Xia W W, Jia Z J. Comparative analysis of soil microbial communities by pyrosequencing and DGGE. Acta Microbiologica Sinica, 2014, 54 (12): 1489- 1499. | |
肖龙海. 2020. 5种菌根真菌对土壤微生物和酶活性以及蓝莓的影响效应研究. 贵阳: 贵州大学. | |
Xiao L H. 2020. Study on the effects of five mycorrhizal fungi on soil microorganism and enzyme activity and blueberry. Guiyang: Guizhou University. [in Chinese] | |
熊 涵. 2021. 不同海拔对马缨杜鹃土壤真菌、根际真菌和根内生真菌群落结构的影响. 贵阳: 贵州师范大学. | |
Xiong H. 2021. Effects of different altitudes on community structure of soil fungi, rhizosphere fungi and root endophytic fungi in Rhododendron delavayi Franch. Guiyang: Guizhou Normal University. [in Chinese] | |
许建新, 刘永金, 王定跃, 等. 2009. 深圳梧桐山风景区主要植物群落结构特征分析. 林业调查规划, 34(2): 29-36. | |
Xu J X, Liu Y J, Wang D Y, et al. 2009. Analysis on structural characteristics of major plant community of Wutong mountain in Shenzhen. Forest Inventory and Planning, 34(2): 29-36. [in Chinese] | |
徐胜男, 王 济, 张凌云, 等. 马缨杜鹃菌根真菌的种类组成. 贵州农业科学, 2014, 42 (6): 76- 79.
doi: 10.3969/j.issn.1001-3601.2014.06.019 |
|
Xu S N, Wang J, Zhang L Y, et al. Species composition of the mycorrhizal fungi of Rhododendron delavayi. Guizhou Agricultural Sciences, 2014, 42 (6): 76- 79.
doi: 10.3969/j.issn.1001-3601.2014.06.019 |
|
袁斓方. 2022. 贵州蓝莓菌根真菌多样性及其对蓝莓幼苗生长的影响. 贵阳: 贵州大学. | |
Yuan L F. 2022. Diversity of mycorrhizal fungi In GuiZhou Vaccinium and their impact on the growth of Vaccinium seedlings. Guiyang: Guizhou University. [in Chinese] | |
张艳华, 孙立夫. 杜鹃花科植物菌根的研究进展. 菌物学报, 2021, 40 (6): 1299- 1316. | |
Zhang Y H, Sun L F. Research advances on the mycorrhizas of ericaceae plants. Mycosystema, 2021, 40 (6): 1299- 1316. | |
Baba T, Hirose D, Noma S, et al. Inoculation with two Oidiodendron maius strains differentially alters the morphological characteristics of fibrous and pioneer roots of Vaccinium virgatum ‘Tifblue’ cuttings. Scientia Horticulturae, 2021, 281 (7): 109948. | |
Baird R, Wood-jones A, Varco J, et al. Rhododendron decline in the great smoky mountains and surrounding areas: intensive site study of biotic and abiotic parameters associated with the decline. Southeastern Naturalist, 2014, 13 (1): 1- 25.
doi: 10.1656/058.013.0101 |
|
Bougoure D S, Cairney J W G. Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture independent molecular methods. Environmental Microbiology, 2005, 7 (11): 1743- 1754.
doi: 10.1111/j.1462-2920.2005.00919.x |
|
Cai B B, Vancov T, Si H Q, et al. Isolation and characterization of endomycorrhizal fungi associated with growth promotion of blueberry plants. Journal of Fungi, 2021, 7 (8): 584.
doi: 10.3390/jof7080584 |
|
Cai L, Neilsen J, Dao Z L, et al. Rhododendron longipedicellatum (ericaceae), a new species from Southeastern Yunnan, China. Phytotaxa, 2016, 282 (4): 296- 300.
doi: 10.11646/phytotaxa.282.4.7 |
|
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods, 2013, 10 (10): 996.
doi: 10.1038/nmeth.2604 |
|
Fehrer J, Reblova M, Bambasova V, et al. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Studies in Mycology, 2019, 94 (3): 195- 225. | |
Hambleton S, Currah R S. Fungal endophytes from the roots of alpine and boreal ericaceae. Canadian Journal of Botany, 1997, 75 (9): 1570- 1581.
doi: 10.1139/b97-869 |
|
Li Y, Li Z, Arafat Y, et al. Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology, 2020, 70 (1): 1- 12.
doi: 10.1186/s13213-020-01552-1 |
|
Lin L C, Lin W R, Hsu Y C, et al. Influences of three Oidiodendron maius isolates and two inorganic nitrogen sources on the growth of Rhododendron kanehirae. Horticultural Science & Technology, 2020, 38 (5): 742- 753. | |
Midgley D J, Sutcliffe B, Greenfield P, et al. Gamarada debralockiae gen. nov sp nov. the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza, 2018, 28 (4): 379- 389.
doi: 10.1007/s00572-018-0835-y |
|
Mu D Y, Du N, Zwiazek J J. Inoculation with ericoid mycorrhizal associations alleviates drought stress in lowland and upland velvetleaf Blueberry (Vaccinium myrtilloides) seedlings. Plants-Basel, 2021, 10 (12): 2786.
doi: 10.3390/plants10122786 |
|
Myers M D, Leake J R. Phosphodiesters as mycorrhizal p sources: II. ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by vaccinium macrocarpon. The New Phytologist, 1996, 132 (3): 445- 451.
doi: 10.1111/j.1469-8137.1996.tb01864.x |
|
Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis. New Phytologist, 2018, 220 (4): 1141- 1147.
doi: 10.1111/nph.15218 |
|
Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil, 2002, 244 (1/2): 41- 53.
doi: 10.1023/A:1020289401610 |
|
Pescie M A, Montecchia M, Lavado R S, et al. Inoculation with Oidiodendron maius BP improves nitrogen absorption from fertilizer and growth of Vaccinium corymbosum during the early nursery stage. Plants-Basel, 2023, 12 (4): 792.
doi: 10.3390/plants12040792 |
|
Rungjindamai N, Jones E B G. Why are there so few basidiomycota and basal fungi as endophytes? a review. Journal of Fungi, 2024, 10 (1): 67.
doi: 10.3390/jof10010067 |
|
Sahu P K, Tilgam J, Mishra S, et al. Surface sterilization for isolation of endophytes: ensuring what (not) to grow. Journal of Basic Microbiology, 2022, 62 (6): 647- 668.
doi: 10.1002/jobm.202100462 |
|
Selosse M A, Setaro S, Glatard F, et al. Sebacinales are common mycorrhizal associates of ericaceae. New Phytologist, 2007, 174 (4): 864- 878.
doi: 10.1111/j.1469-8137.2007.02064.x |
|
Sieber T N. Endophytic fungi in forest trees: are they mutualists. Fungal Biology Reviews, 2007, 21 (2/3): 75- 89. | |
Su M, Hao Z, Shi H, et al. Metagenomic analysis revealed differences in composition and function between liquid-associated and solid associated microorganisms of sheep rumen. Front Microbiol, 2022, 13 (1): 1- 14. | |
Sun L, Pei K, Wang F, et al. Different distribution patterns between putative ercoid mycorrhizal and other fungal assemblages in roots of Rhododendron decorum in the Southwest of China. PLoS ONE, 2018, 7 (11): e49867. | |
Tian W, Zhang C Q, Qiao P, et al. Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan, China. Mycologia, 2011, 103 (4): 703- 709.
doi: 10.3852/10-296 |
|
Usuki F, Abe J P, Kakishima M. Diversity of ericoid mycorrhizal fungi isolated from hair roots of Rhododendron obtusum var. kaempferi in a Japanese red pine forest. Mycoscience, 2003, 44 (1): 0097- 0102. | |
Vohnik M. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza, 2020, 30 (6): 671- 695.
doi: 10.1007/s00572-020-00989-1 |
|
Vohnik M, Albrechtova J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six european rhododendron species. Folia Geobotanica, 2011, 46 (4): 373- 386.
doi: 10.1007/s12224-011-9098-5 |
|
Vohnik M, Panek M, Fehrer J, et al. Experimental evidence of ericoid mycorrhizal potential within serendipitaceae (sebacinales). Mycorrhiza, 2016, 26 (8): 831- 846.
doi: 10.1007/s00572-016-0717-0 |
|
Walker J F, Aldich-wolfe L, Riffel A, et al. Diverse Helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity. New Phytologist, 2011, 191 (2): 515- 527.
doi: 10.1111/j.1469-8137.2011.03703.x |
|
Wang J, Wang J, Wu S, et al. Global geographic diversity and distribution of the myxobacteria. Microbiology Spectrum, 2021, 9 (1): 1- 15. | |
Wei X, Chen J, Zhang C, et al. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth. Frontiers in Plant Science, 2016, 7 (1): 1594. | |
Wei X Y, Chen J J, Zhang C Y, et al. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Horticulture Research, 2020, 7 (1): 1- 11.
doi: 10.1038/s41438-019-0222-7 |
|
Zhang C, Yin L, Dai S. Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza, 2009, 19 (6): 417- 423.
doi: 10.1007/s00572-009-0246-1 |
|
Zheng H, Qiao M, Xu J, et al. Culture-based and culture-independent assessments of endophytic fungal diversity in aquatic plants in southwest China. Frontiers In Fungal Biology, 2021, 2 (1): 1- 18. |
[1] | 吕梦燕,任军,张立民,陈思羽,赵佳丽,鲁佳乐,孔晨,戴维,金桂香. 基于光合指标的平欧杂种榛扦插苗根系生长发育评价模型[J]. 林业科学, 2025, 61(3): 100-107. |
[2] | 王胤,姚瑞玲,肖玉菲. PBZ/DPC处理对马尾松扦插生根及GAs代谢的影响[J]. 林业科学, 2025, 61(3): 147-157. |
[3] | 张时馨,耿阳阳,周汀,王纪辉,胡伯凯,刘亚娜. 橙黄乳菇对马尾松和华山松幼苗生长及根系代谢物的调控[J]. 林业科学, 2024, 60(9): 50-58. |
[4] | 杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68. |
[5] | 杨玲玉,石文广,罗志斌. 外生菌根真菌卷边桩菇促进宿主灰杨氮吸收利用特征[J]. 林业科学, 2024, 60(9): 69-79. |
[6] | 张盛晰,何炎红,郝龙飞,聂正英,刘婷岩,王云鹏,滑永春. 土壤微生物和氮添加对柠条根际微生境及根系形态的调控作用[J]. 林业科学, 2024, 60(9): 80-89. |
[7] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
[8] | 郑梦杰,谢炜,马行聪,黄坚钦,彭丽媛,秦华. 山核桃根系分泌物对溶磷菌生长及活化土壤磷的影响[J]. 林业科学, 2024, 60(6): 60-70. |
[9] | 朱丽琴,黄荣珍,彭志远,邹显花,廖迎春,李静凯,陈光水. 植物地下觅养性状对土壤富磷斑块塑性响应的研究进展[J]. 林业科学, 2024, 60(5): 191-200. |
[10] | 谢宪,邓勋,宋丽文,梁军. 落叶松枯梢病罹病叶及病梢真菌多样性[J]. 林业科学, 2024, 60(10): 76-85. |
[11] | 夏成康,林勇,兰勇,吴高洋,王晟楠,陈伏生. 初植和补植阔叶树对红壤丘陵区湿地松养分获取和转运的影响[J]. 林业科学, 2024, 60(1): 47-57. |
[12] | 郑永林,王云琦,徐晓晓,王玉杰,李耀明. 重庆缙云山马尾松和润楠径向生长的酸雨响应[J]. 林业科学, 2024, 60(1): 58-67. |
[13] | 樊玥,罗培润,王威,谢倩,陈清西. 印度梨形孢与杜鹃共生体系建立及提高抗旱性效应[J]. 林业科学, 2024, 60(1): 93-102. |
[14] | 赵世魁,郭晋平,张芸香. 暖温带山地天然次生林演替序列根系呼吸速率对林地增温的响应[J]. 林业科学, 2023, 59(2): 10-21. |
[15] | 刘倩愿,陈奕帆,陈艳梅,王辉民. 铵硝比对亚热带树种幼苗氮吸收偏好及吸收根属性的影响[J]. 林业科学, 2023, 59(2): 48-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||