林业科学 ›› 2025, Vol. 61 ›› Issue (5): 12-22.doi: 10.11707/j.1001-7488.LYKX20240252
王旭1,2,*(),郭昊1,2,3,宝音满达1,2,周光益1,2,陈跃华4,李党仁4
收稿日期:
2024-05-06
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
王旭
E-mail:cafwangxu111@caf.ac.cn
基金资助:
Xu Wang1,2,*(),Hao Guo1,2,3, Baoyinmanda1,2,Guangyi Zhou1,2,Yuehua Chen4,Dangren Li4
Received:
2024-05-06
Online:
2025-05-20
Published:
2025-05-24
Contact:
Xu Wang
E-mail:cafwangxu111@caf.ac.cn
摘要:
目的: 探索南方人工林林分中更易受到干旱的影响的类型,以及干旱导致树木受损或死亡的关键影响因子,以期为全球变化背景亚热带森林经营管理提供理论支撑。方法: 以2022年发生在我国南方地区极端干旱为契机,以林龄相近的杉木-闽楠为主的人工混交林为研究对象,按陡坡缓坡2种坡度、2种树种混交与3种以上树种混交4个类型,分别设置3块植物样地,调查样地内物种组成、胸径、树高、单木受损率以及土壤物理性等,分析本次极端干旱气候特征、不同坡度林分受损率、受损木组成及影响因素等。结果: 坡度对土壤团聚体影响较大,而混交类型对土壤团聚体无影响,混交类型对表层(0~20 cm)土壤孔隙度、土壤密度、最大持水量、毛管持水量和最小持水量均产生较大的影响,且随着土层深度的增加影响减少,相同混交类型中,不同坡度对这些指标无显著的影响;干旱导致树木不同程度的损伤,平均受损率为29.18%,其中轻度受损、中度受损和重度受损分别为15.46%、2.42%和11.3%;受损木中主要为林冠层优势种和林下更新层受损严重,其中阔叶树比针叶树受损严重,人工栽培种比天然更新种受损严重;坡度和坡位对树木受损率影响最大,此外还受林分密度、土壤密度、土壤团聚体、海拔、20 cm土层总孔隙度、土壤最大持水量和毛管持水量等因素影响。结论: 2022年南方极端干旱呈降水格局显著变化的特征,该变化与全球气候变化的预测具有一致性,多树种混交有利于提高森林的抗旱能力,坡和上坡位易受干旱的影响,干旱对森林的影响是多因素相互作用的结果。亚热带森林经营管理应以构建多树种混交林为主,确定合理的林分密度,加强表层土壤管理。
中图分类号:
王旭,郭昊,宝音满达,周光益,陈跃华,李党仁. 极端干旱条件下亚热带杉木人工混交林林木受损特征及影响因素[J]. 林业科学, 2025, 61(5): 12-22.
Xu Wang,Hao Guo, Baoyinmanda,Guangyi Zhou,Yuehua Chen,Dangren Li. Damaged Characteristics and Influencing Factors of Cunninghamia lanceolata Mixed Plantations in Subtropics under Extreme Drought Conditions[J]. Scientia Silvae Sinicae, 2025, 61(5): 12-22.
表1
样地基本情况"
编号 Plot No. | 森林混交类型Forest mixed type | 坡向 Aspect of slope (°) | 坡位 Slope position | 坡度 Slope (°) | 海拔 Altitude/m | 林分密度 Density/(tree·hm?2) |
XS01 | 杉木-闽楠C. lanceolata + P. bournei | S190 | 中Mesoslope | 12 | 610 | 1 600 |
XS01 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中 Mesoslope | 12 | 613.2 | 1 800 |
XS01 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中 Mesoslope | 12 | 615.4 | 1 700 |
XS02 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中上 Mid-uphill | 26 | 633.5 | 2 475 |
XS02 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中上 Mid-uphill | 30 | 647.5 | 2 475 |
XS02 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中上 Mid-uphill | 30.5 | 643.5 | 3 125 |
XS03 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 中下 Mid-downhill | 25 | 473.2 | 1 350 |
XS03 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 中下 Mid-downhill | 25 | 468.7 | 1 250 |
XS03 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 中下 Mid-downhill | 25 | 467.4 | 1 125 |
XS04 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 下 Downslope | 11 | 442.9 | 1 750 |
XS04 | 杉木-闽楠-南方红豆杉 C. lanceolata + P. bournei + T. wallichiana | S190 | 下 Downslope | 12 | 437.1 | 1 725 |
XS04 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 下 Downslope | 12 | 443.7 | 1 300 |
表2
干旱受损木物种组成"
种名Species | 株数 Number | 正常 Normal type | 占比 Proportion (%) | 轻度受损 Mild damaged | 占比 Proportion (%) | 中度受损 Moderate damaged | 占比 Proportion (%) | 严重受损 Severely damaged | 占比 Proportion (%) |
八角枫Alangium chinense | 6 | 6 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
杜鹃Rhododendron simsii | 3 | 3 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
枫香Liquidambar formosana | 62 | 56 | 90.32 | 0 | 0.00 | 1 | 1.61 | 5 | 8.06 |
光叶山矾Symplocos lancifolia | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
栎Quercus acutissima | 3 | 3 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
马尾松Pinus massoniana | 5 | 5 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
毛八角枫Alangium kurzii | 5 | 5 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
闽楠Phoebe bournei | 530 | 298 | 56.23 | 131 | 24.72 | 19 | 3.58 | 82 | 15.47 |
南方红豆杉Taxus wallichiana | 59 | 55 | 93.22 | 1 | 1.69 | 0 | 0.00 | 3 | 5.08 |
青榨槭Acer davidii | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
日本柳杉Cryptomeria japonica | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
山苍子Litsea cubeba | 2 | 2 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
杉木Cunninghamia lanceolata | 172 | 162 | 94.19 | 2 | 1.16 | 1 | 0.58 | 7 | 4.07 |
香椿Toona sinensis | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
野漆Toxicodendron succedaneum | 13 | 12 | 92.31 | 0 | 0.00 | 0 | 0.00 | 1 | 7.69 |
樱Prunus serrulata | 2 | 2 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
千年桐Vernicia montana | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
总计 Total | 867 | 614 | 70.82 | 134 | 15.46 | 21 | 2.42 | 98 | 11.30 |
图5
树木受损与环境因子相关性 DR:树木受损率;DR:死亡率;SA:土壤团粒结构;DS:林分密度;EL:海拔/坡位;SL:坡度;TS20、TS40、TS60、TS80:分别为20 cm、40 cm、60 cm和80 cm 土层总孔隙度;VW20、VW40、Vweight60和Vweight80:分别为20 cm、40 cm、60 cm和80 cm土层密度; MC20、MC40、MC60、MC80:分别为20 cm、40 cm、60 cm和80 cm土层最大持水量;CS20、CS40、CS60、CS80: 分别为20 cm、40 cm、60 cm和80 cm土层毛管持水量;MM20、MM40、MM60、MM80:分别为20 cm、40 cm、60 cm和80 cm土层最小持水量。"
陈龙池, 汪思龙, 陈楚莹. 杉木人工林衰退机理探讨. 应用生态学报, 2004, 15 (10): 1953- 1957.
doi: 10.3321/j.issn:1001-9332.2004.10.050 |
|
Chen L C, Wang S L, Chen C Y. Degradation mechanism of Chinese fir plantation. Chinese Journal of Applied Ecology, 2004, 15 (10): 1953- 1957.
doi: 10.3321/j.issn:1001-9332.2004.10.050 |
|
洪洁莉, 陈丽娟, 王悦颖, 等. 2022年秋季我国气候异常特征及成因分析. 气象, 2023, 49 (4): 495- 505.
doi: 10.7519/j.issn.1000-0526.2023.032701 |
|
Hong J L, Chen L J, Wang Y Y, et al. Features and possible causes of abnormal climate over Chine in autumn 2022. Meteorological Monthly, 2023, 49 (4): 495- 505.
doi: 10.7519/j.issn.1000-0526.2023.032701 |
|
刘 南, 曲鲁平, 汤行昊, 等. 水分条件和热浪频次对木荷苗木光合特性与生长速率的影响. 林业科学, 2023, 59 (3): 104- 114.
doi: 10.11707/j.1001-7488.LYKX20210944 |
|
Liu N, Qu L P, Tang X H, et al. Effects of water conditions and heat wave frequency on the photosynthetic characteristics and growth rate of Schima superba seedlings. Scientia Silvae Sinicae, 2023, 59 (3): 104- 114.
doi: 10.11707/j.1001-7488.LYKX20210944 |
|
罗云建, 张小全. 多代连栽人工林碳贮量的变化. 林业科学研究, 2006, 19 (6): 791- 798.
doi: 10.3321/j.issn:1001-1498.2006.06.020 |
|
Luo Y J, Zhang X Q. Carbon stock changes of successive rotations of plantation. Forest Research, 2006, 19 (6): 791- 798.
doi: 10.3321/j.issn:1001-1498.2006.06.020 |
|
孝惠爽, 赵 杰, 傅声雷. 华南典型尾叶桉纯林经营对土壤理化性质, 微生物和线虫群落的影响. 生态学报, 2023, 43 (19): 7963- 7973. | |
Xiao H S, Zhao J, Fu S L. Effects of Eucalyptus plantations and management on soil physico-chemical properties, microbial and nematode communities in South China. Acta Ecologica Sinica, 2023, 43 (19): 7963- 7973. | |
Allen C D, Breshears D D, McDowell N G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 2015, 6 (8): 1- 55. | |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001 |
|
Assi A T, Blake J, Mohtar R H, et al. Soil aggregates structure-based approach for quantifying the field capacity, permanent wilting point and available water capacity. Irrigation Science, 2019, 37 (4): 511- 522.
doi: 10.1007/s00271-019-00630-w |
|
Bennett A C, McDowell N G, Allen C D, et al. Larger trees suffer most during drought in forests worldwide. Nature Plants, 2015, 1 (10): 1- 5. | |
Bodner G, Nakhforoosh A, Kaul H P. Management of crop water under drought: a review. Agronomy for Sustainable Development, 2015, 35 (2): 401- 442.
doi: 10.1007/s13593-015-0283-4 |
|
Britton T G, Brodribb T J, Richards S A, et al. Canopy damage during a natural drought depends on species identity, physiology and stand composition. New Phytologist, 2022, 233 (5): 2058- 2070.
doi: 10.1111/nph.17888 |
|
Brodribb T J, Powers J, Cochard H, et al. Hanging by a thread? forests and drought. Science, 2020, 368 (6488): 261- 266.
doi: 10.1126/science.aat7631 |
|
Brzostek E R, Dragoni D, Schmid H P, et al. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Global Change Biology, 2014, 20 (8): 2531- 2539.
doi: 10.1111/gcb.12528 |
|
Chou C, Chiang J C H, Lan C W, et al. Increase in the range between wet and dry season precipitation. Nature Geoscience, 2013, 6 (4): 263- 267.
doi: 10.1038/ngeo1744 |
|
Chou C, Lan C W. Changes in the annual range of precipitation under global warming. Journal of Climate, 2012, 25 (1): 222- 235.
doi: 10.1175/JCLI-D-11-00097.1 |
|
Clark J S, Iverson L, Woodall C W, et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22 (7): 2329- 2352.
doi: 10.1111/gcb.13160 |
|
Dai A. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2 (1): 45- 65.
doi: 10.1002/wcc.81 |
|
Das A J, Stephenson N L, Flint A, et al. Climatic correlates of tree mortality in water-and energy-limited forests. PLoS ONE, 2013, 8 (7): e69917.
doi: 10.1371/journal.pone.0069917 |
|
Dietze M C, Moorcroft P R. Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biology, 2011, 17 (11): 3312- 3326.
doi: 10.1111/j.1365-2486.2011.02477.x |
|
Engelbrecht B M J, Comita L S, Condit R, et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 2007, 447 (7140): 80- 82.
doi: 10.1038/nature05747 |
|
Fauset S, Baker T R, Lewis S L, et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 2012, 15 (10): 1120- 1129.
doi: 10.1111/j.1461-0248.2012.01834.x |
|
Feeley K J, Davies S J, Perez R, et al. Directional changes in the species composition of a tropical forest. Ecology, 2011, 92 (4): 871- 882.
doi: 10.1890/10-0724.1 |
|
Felsmann K, Baudis M, Kayler Z E, et al. Responses of the structure and function of the understory plant communities to precipitation reduction across forest ecosystems in Germany. Annals of Forest Science, 2018, 75 (1): 3.
doi: 10.1007/s13595-017-0681-7 |
|
Fensham R J, Fairfax R J. Drought-related tree death of savanna eucalypts: species susceptibility, soil conditions and root architecture. Journal of Vegetation Science, 2007, 18 (1): 71- 80.
doi: 10.1111/j.1654-1103.2007.tb02517.x |
|
Geroy I J, Gribb M M, Marshall H P, et al. Aspect influences on soil water retention and storage. Hydrological Processes, 2011, 25 (25): 3836- 3842.
doi: 10.1002/hyp.8281 |
|
Gobin R, Korboulewsky N, Dumas Y, et al. Transpiration of four common understorey plant species according to drought intensity in temperate forests. Annals of Forest Science, 2015, 72 (8): 1053- 1064.
doi: 10.1007/s13595-015-0510-9 |
|
Grossiord C, Granier A, Ratcliffe S, et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (41): 14812- 14815. | |
Lopez J G, Tor-Ngern P, Oren R, et al. How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought. Global Change Biology, 2021, 27 (13): 3066- 3078.
doi: 10.1111/gcb.15601 |
|
Hawthorne S, Miniat C F. Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology, 2018, 11 (1): e1825.
doi: 10.1002/eco.1825 |
|
Hoover D L, Pfennigwerth A A, Duniway M C. Drought resistance and resilience: the role of soil moisture–plant interactions and legacies in a dryland ecosystem. Journal of Ecology, 2021, 109 (9): 3280- 3294.
doi: 10.1111/1365-2745.13681 |
|
Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526 (7574): 574- 577.
doi: 10.1038/nature15374 |
|
Jeong D I, Sushama L, Khaliq M N. The role of temperature in drought projections over North America. Climatic Change, 2014, 127 (2): 289- 303.
doi: 10.1007/s10584-014-1248-3 |
|
Jung E Y, Gaviria J, Sun S, et al. Comparative drought resistance of temperate grassland species: testing performance trade-offs and the relation to distribution. Oecologia, 2020, 192 (4): 1023- 1036.
doi: 10.1007/s00442-020-04625-9 |
|
Kang J, Shen H H, Zhang S Y, et al. Contrasting growth responses to drought in three tree species widely distributed in northern China. Science of the Total Environment, 2024, 908, 168331.
doi: 10.1016/j.scitotenv.2023.168331 |
|
Koepke D F, Kolb T E, Adams H D. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone. Oecologia, 2010, 163 (4): 1079- 1090.
doi: 10.1007/s00442-010-1671-8 |
|
Lines E R, Coomes D A, Purves D W. Influences of forest structure, climate and species composition on tree mortality across the eastern US. PLoS ONE, 2010, 5 (10): e13212.
doi: 10.1371/journal.pone.0013212 |
|
Liu D, Wang T, Peñuelas J, et al. Drought resistance enhanced by tree species diversity in global forests. Nature Geoscience, 2022, 15 (10): 800- 804.
doi: 10.1038/s41561-022-01026-w |
|
Liu Z B, Zhu J Y, Xia J Y, et al. Declining resistance of vegetation productivity to droughts across global biomes. Agricultural and Forest Meteorology, 2023, 340, 109602.
doi: 10.1016/j.agrformet.2023.109602 |
|
Lv Y, He H L, Ren X L, et al. High resistance of deciduous forests and high recovery rate of evergreen forests under moderate droughts in China. Ecological Indicators, 2022, 144, 109469.
doi: 10.1016/j.ecolind.2022.109469 |
|
McDowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368 (6494): eaaz9463.
doi: 10.1126/science.aaz9463 |
|
McDowell N G, Allen C D. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 2015, 5 (7): 669- 672.
doi: 10.1038/nclimate2641 |
|
Millar C I, Stephenson N L. Temperate forest health in an era of emerging megadisturbance. Science, 2015, 349 (6250): 823- 826.
doi: 10.1126/science.aaa9933 |
|
Miyamoto K, Aiba S, Aoyagi R, et al. Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo. Forest Ecology and Management, 2021, 490, 119096.
doi: 10.1016/j.foreco.2021.119096 |
|
Olson M E, Anfodillo T, Gleason S M, et al. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. New Phytologist, 2021, 229 (4): 1877- 1893.
doi: 10.1111/nph.16961 |
|
Olson M E, Soriano D, Rosell J A, et al. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (29): 7551- 7556. | |
Plourde A, Krause C, Lord D. Spatial distribution, architecture, and development of the root system of Pinus banksiana Lamb. in natural and planted stands. Forest Ecology and Management, 2009, 258 (9): 2143- 2152.
doi: 10.1016/j.foreco.2009.08.016 |
|
Rehschuh R, Mette T, Menzel A, et al. Soil properties affect the drought susceptibility of Norway spruce. Dendrochronologia, 2017, 45, 81- 89.
doi: 10.1016/j.dendro.2017.07.003 |
|
Robert J A, Lindgren B S. Relationships between root form and growth, stability, and mortality in planted versus naturally regenerated lodgepole pine in north-central British Columbia. Canadian Journal of Forest Research, 2006, 36 (10): 2642- 2653.
doi: 10.1139/x06-146 |
|
Ruiz-Benito P, Lines E R, Gómez-Aparicio L, et al. Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS ONE, 2013, 8 (2): e56843.
doi: 10.1371/journal.pone.0056843 |
|
Schnabel F, Barry K E, Eckhardt S, et al. Neighbourhood species richness and drought-tolerance traits modulate tree growth and δ13C responses to drought. Plant Biology, 2024, 26 (2): 330- 345.
doi: 10.1111/plb.13611 |
|
Schwartz N B, Budsock A M, Uriarte M. Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape. Ecology, 2019, 100 (6): e02677.
doi: 10.1002/ecy.2677 |
|
Sohn J A, Saha S, Bauhus J. Potential of forest thinning to mitigate drought stress: a meta-analysis. Forest Ecology and Management, 2016, 380, 261- 273.
doi: 10.1016/j.foreco.2016.07.046 |
|
Stampfli A, Bloor J M G, Fischer M, et al. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biology, 2018, 24 (5): 2021- 2034.
doi: 10.1111/gcb.14046 |
|
Trenberth K E, Dai A, Van Der Schrier G, et al. Global warming and changes in drought. Nature Climate Change, 2014, 4 (1): 17- 22.
doi: 10.1038/nclimate2067 |
|
Trugman A T, Anderegg L D L, Anderegg W R L, et al. 2021. Why is tree drought mortality so hard to predict? Trends in Ecology & Evolution, 36(6): 520-532. | |
Trugman A T, Anderegg L D L, Shaw J D, et al. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (15): 8532- 8538. | |
Trugman A T, Detto M, Bartlett M K, et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecology Letters, 2018, 21 (10): 1552- 1560.
doi: 10.1111/ele.13136 |
|
van der Molen M K, Dolman A J, Ciais P, et al. Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 2011, 151 (7): 765- 773.
doi: 10.1016/j.agrformet.2011.01.018 |
|
van Mantgem P J, Caprio A C, Stephenson N L, et al. 2016. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA? Fire Ecology, 12(1): 13-25. | |
von Rein I, Gessler A, Premke K, et al. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Global Change Biology, 2016, 22 (8): 2861- 2874.
doi: 10.1111/gcb.13270 |
|
Vose J M, Miniat C F, Luce C H, et al. Ecohydrological implications of drought for forests in the United States. Forest Ecology and Management, 2016, 380, 335- 345.
doi: 10.1016/j.foreco.2016.03.025 |
|
Walter J, Nagy L, Hein R, et al. Do plants remember drought? hints towards a drought-memory in grasses. Environmental and Experimental Botany, 2011, 71 (1): 34- 40.
doi: 10.1016/j.envexpbot.2010.10.020 |
|
Wolfe B T, Sperry J S, Kursar T A. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. New Phytologist, 2016, 212 (4): 1007- 1018.
doi: 10.1111/nph.14087 |
|
Wright A J, Mommer L, Barry K, et al. Stress gradients and biodiversity: monoculture vulnerability drives stronger biodiversity effects during drought years. Ecology, 2021, 102 (1): e03193.
doi: 10.1002/ecy.3193 |
|
Xu X, Polley H W, Hofmockel K, et al. Species composition but not diversity explains recovery from the 2011 drought in Texas grasslands. Ecosphere, 2017, 8 (3): e01704.
doi: 10.1002/ecs2.1704 |
|
Yang Y, Saatchi S S, Xu L, et al. Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9 (1): 3172.
doi: 10.1038/s41467-018-05668-6 |
|
Young D J N, Stevens J T, Earles J M, et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 2017, 20 (1): 78- 86.
doi: 10.1111/ele.12711 |
|
Zhang J, Huang S M, He F L. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (13): 4009- 4014. | |
Zhao Y, Li J X, Jin Y T, et al. Divergent growth and responses of conifer and broad-leaved trees to warming-drying climate in a semi-arid region, northern China. European Journal of Forest Research, 2024, 143 (3): 887- 901.
doi: 10.1007/s10342-024-01668-y |
[1] | 吴璧芸,雷相东,何潇,李玉堂. 长白山天然针阔混交林优势高估计方法及立地质量评价[J]. 林业科学, 2025, 61(2): 85-92. |
[2] | 杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68. |
[3] | 刘澳,王嘉铮,卢思航,雷菲娅,宁宏涛,腾渝,李守中. 长汀生态恢复区不同混交比例针阔混交林内马尾松种群动态及其驱动机制[J]. 林业科学, 2024, 60(5): 89-97. |
[4] | 夏成康,林勇,兰勇,吴高洋,王晟楠,陈伏生. 初植和补植阔叶树对红壤丘陵区湿地松养分获取和转运的影响[J]. 林业科学, 2024, 60(1): 47-57. |
[5] | 柳帅,张德旭,张安安,李哲,龙文兴,臧润国,张志东,陈远,冯广,陈玉凯. 海南长臂猿现有天然林栖息地与松树林潜在栖息地的植物物种多样性比较[J]. 林业科学, 2023, 59(7): 115-127. |
[6] | 陈睿,汤孟平. 天目山针阔混交林与常绿阔叶林的空间结构比较[J]. 林业科学, 2023, 59(5): 21-31. |
[7] | 管凝,程金花,侯芳,曾合州,沈子雅,赵梦圆,秦建淼. 西南喀斯特地区2种森林的土壤优先流特征[J]. 林业科学, 2023, 59(12): 61-70. |
[8] | 杨承栋. 发展有群落结构混交林是维护、恢复和提高森林土壤功能实现人工林可持续经营的关键技术[J]. 林业科学, 2022, 58(8): 26-40. |
[9] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
[10] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
[11] | 霍朗宁,张晓丽. 基于机载LiDAR点云多层聚类的单木信息提取及其精度评价[J]. 林业科学, 2021, 57(1): 85-94. |
[12] | 赵家豪,叶钰倩,陈斌,袁在翔,刘江南,杨涛,袁荣斌,关庆伟. 江西武夷山南方铁杉针阔混交林主要植物生态位特征[J]. 林业科学, 2021, 57(1): 191-199. |
[13] | 赵中华,惠刚盈. 林分结构多样性研究进展[J]. 林业科学, 2020, 56(9): 143-152. |
[14] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. |
[15] | 万盼,刘文桢,刘瑞红,王鹏,王宏翔,惠刚盈. 结构化经营对栎松混交林林分空间结构及稳定性的影响[J]. 林业科学, 2020, 56(4): 35-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||