林业科学 ›› 2024, Vol. 60 ›› Issue (9): 69-79.doi: 10.11707/j.1001-7488.LYKX20230524
收稿日期:
2023-10-30
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
石文广
E-mail:swg0911@126.com
基金资助:
Lingyu Yang1,Wenguang Shi1,*(),Zhibin Luo1,2
Received:
2023-10-30
Online:
2024-09-25
Published:
2024-10-08
Contact:
Wenguang Shi
E-mail:swg0911@126.com
摘要:
目的: 分析外生菌根真菌卷边桩菇对灰杨铵态氮和硝态氮吸收、同化和代谢的影响,揭示卷边桩菇促进灰杨氮吸收利用的生理特征。方法: 对砂培灰杨幼苗接种外生菌根真菌卷边桩菇,以正常根、菌根和叶片为研究对象,采用非损伤微测技术测定NH4+与NO3?吸收速率,利用qRT-PCR分析氮转运基因的转录水平,应用分光光度计法测定NH4+与NO3?含量以及氮同化酶活性,使用元素分析仪测定总碳和总氮。结果: 接种卷边桩菇16周后,灰杨根系形成明显的外生菌根结构,菌根定殖率达55.5%。菌根灰杨的净光合速率显著高于非菌根灰杨,生物量没有明显变化。菌根灰杨根尖的NH4+和NO3?吸收速率相较非菌根灰杨显著提高。接种卷边桩菇改变灰杨根尖吸收NO3?的空间特征,使最大吸收点从900 μm前移至300 μm。与氮的吸收速率一致,菌根灰杨根中NH4+转运蛋白编码基因(如AMT1;1、AMT2;1和AMT3;2等)和NO3?转运蛋白编码基因(如NPF1.2F、NPF2.11A和NPF6.3等)的转录表达显著高于非菌根灰杨,且菌根灰杨根中NH4+转运蛋白编码基因的上调程度强于NO3?转运蛋白编码基因,菌根灰杨根和叶中的NH4+以及根中的NO3?含量显著高于非菌根灰杨。菌根灰杨根和叶中的谷氨酰胺合成酶、谷氨酸合成酶和谷氨酸脱氢酶等NH4+氮同化酶活性显著升高。接种卷边桩菇引起灰杨根中的总氮含量显著升高,叶中的总碳含量显著降低,菌根灰杨根和叶中的碳/氮显著低于非菌根灰杨。结论: 外生菌根真菌卷边桩菇主要通过提高铵态氮的吸收、同化和代谢,增强宿主灰杨的氮营养。
中图分类号:
杨玲玉,石文广,罗志斌. 外生菌根真菌卷边桩菇促进宿主灰杨氮吸收利用特征[J]. 林业科学, 2024, 60(9): 69-79.
Lingyu Yang,Wenguang Shi,Zhibin Luo. Characteristics of Ectomycorrhizal Fungi Paxillus involutus Promoting Nitrogen Uptake and Utilization of Its Host Populus tremula × Populus alba[J]. Scientia Silvae Sinicae, 2024, 60(9): 69-79.
表1
AMTs和NRTs基因qRT-PCR引物"
基因名称 | 基因ID号 | 上游引物(5'→3') | 下游引物(5'→3') |
Gene names | Gene model | Forward primers (5'→3') | Reverse primers (5'→3') |
AMT1;1 | Potri.010G063500 | GTGTCATCTTCACCGCCTTA | CCATGCTTGTTAGACTCGTC |
AMT1;2 | Potri.019G023600 | CCAATCCGGCTAAACTCGA | CACCACTAACGAAGCACTAT |
AMT2;1 | Potri.006G102800 | TGCCAGGGCTTGTCATACT | CCTAGTGCCATCTTCGAGTG |
AMT3;1 | Potri.001G305400 | CATGGCTGTCCTTAACACGA | ATCCTTGAACAAGACCTGCA |
AMT3;2 | Potri.019G000800 | CCCTTGCGTCCATTTCCTT | ATGCCAGTGGGAGTGGGTTA |
NPF1.2F | Potri.006G240000 | TACATCCAGAGGAGGGCAAG | GGTCCATAACTCCGACAGCA |
NRT2.4A | Potri.009G008500 | CCTACAGTCCCCACAGATAC | GCAGCGAAAGTGGAGACAA |
NPF2.7 | Potri.008G045100 | GATAACATCAACGACGGGAG | TCAAACATTACGGCAGGCT |
NPF2.11 | Potri.012G071500 | TATTCCTCCCAAGTCCATCA | CTGTTTCCAAGGCGTCTGT |
NPF4.3E | Potri.003G000800 | AATAGCCCCATCTGCTGACT | TGGAAGGATTTGGCGAGTT |
NPF4.6A | Potri.014G036200 | GAAGGCTAGGAGGAAACAGA | GAACCGTTAGGAGGGCATAT |
NPF5.6B | Potri.006G092000 | GGTGCTGAAAACCAAAATCC | ATAGCGGCAAGTGCGTAA |
NPF5.7B | Potri.016G103500 | TTCTGATCCTGCTGACTTGC | CATAGTGCCTTGCTTGACGA |
NPF6.3 | Potri.003G111500 | AGGTGGAGAGGCAATGGAGA | GTGGCGAAGATGGCGATGG |
NPF7.3B | Potri.003G088800 | TCCTCTTAGCAGGCTTGACA | CTCCCACAGCACGACTTTT |
actin | Potri.019G010400 | CCCATTGAGCACGGTATTGT | TACGACCACTGGCATACAGG |
董园园, 董彩霞, 卢颖林, 等. NH4+-N部分代替NO3−-N对番茄生育中后期氮代谢相关酶活性的影响. 土壤学报, 2006, 43 (2): 261- 266. | |
Dong Y Y, Dong C X, Lu Y L, et al. Influence of partial replacement of NO3−-N with NH4+-N in nutrient solution on enzyme activity in nitrogen assimilation of tomato at different growing stages. Acta Pedologica Sinica, 2006, 43 (2): 261- 266. | |
郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展. 微生物学通报, 2013, 40 (1): 158- 171. | |
Guo L D, Tian C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen. Microbiology China, 2013, 40 (1): 158- 171. | |
梁 军, 张 颖, 贾秀贞, 等. 外生菌根菌对杨树生长及抗逆性指标的效应. 南京林业大学学报(自然科学版), 2003, 27 (4): 39- 43. | |
Liang J, Zhang Y, Jia X Z, et al. Effects of ectomycorrhizae on growth and resistance of poplar. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27 (4): 39- 43. | |
廖晓初, 李 勇, 袁 玲, 等. 氮源对松乳菇生长及氮吸收和硝酸还原酶活性影响. 西南农业大学学报(自然科学版), 2006, 28 (3): 386- 388.
doi: 10.3969/j.issn.1673-9868.2006.03.010 |
|
Liao X C, Li Y, Yuan L, et al. Effects of different nitrogen sources on the growth nitrogen uptake and nitrate reductase activities of ectomycorrhizal fungus Lactarius delicious. Journal of Southwest Agricultural University (Natural Science Edition), 2006, 28 (3): 386- 388.
doi: 10.3969/j.issn.1673-9868.2006.03.010 |
|
刘 辉, 吴小芹, 任嘉红, 等. 荧光假单胞菌与红绒盖牛肝菌共接种对杨树氮代谢和矿质元素含量的影响. 林业科学, 2018, 54 (10): 56- 63. | |
Liu H, Wu X Q, Ren J H, et al. Effect of co-inoculation Pseudomonas fluorescent and Xerocomus chrysenteron on the nitrogen metabolism and mineral element contents of poplar. Scientia Silvae Sinicae, 2018, 54 (10): 56- 63. | |
石文广, 李 靖, 张玉红, 等. 7种杨树铅抗性和积累能力的比较研究. 南京林业大学学报(自然科学版), 2021, 45 (3): 61- 70. | |
Shi W G, Li J, Zhang Y H, et al. A comparative study on lead tolerance and accumulation of seven poplar species. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (3): 61- 70. | |
宋 微, 吴小芹, 叶建仁. 6种外生菌根真菌对895杨矿质营养吸收的影响. 南京林业大学学报(自然科学版), 2011, 54 (2): 35- 38. | |
Song H, Wu X Q, Ye J R. Effects of six kinds of ectomycorrhizal fungi on the mineral nutrient absorption of poplar clone 895. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 54 (2): 35- 38. | |
Aoyama S, Reyes T H, Guglielminetti L, et al. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant and Cell Physiology, 2014, 55 (2): 293- 305.
doi: 10.1093/pcp/pcu002 |
|
Bâ A M, Sanon K B, Duponnois R, et al. Growth response of Afzelia africana Sm. seedlings to ectomycorrhizal inoculation in a nutrient-deficient soil. Mycorrhiza, 1999, 9 (2): 91- 95.
doi: 10.1007/s005720050005 |
|
Bidartondo M I, Wallander H Ek H, Söderström B. 2001. Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytologist, 151(2): 543−550. | |
Bittsánszky A, Pilinszky K, Gyulai G, et al. Overcoming ammonium toxicity. Plant Science, 2015, 231, 184- 190.
doi: 10.1016/j.plantsci.2014.12.005 |
|
Børja I, Nilsen P. Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old Scots pine (Pinus sylvestris L.) stands. Plant and Soil, 2009, 314 (1/2): 109- 119. | |
Castro-Rodríguez V, Assaf-Casals I, Pérez-Tienda J, et al. 2016. Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant, Cell & Environment, 39(8): 1669−1682. | |
Castro-Rodríguez V, Cañas R A, de la Torre F N, et al. Molecular fundamentals of nitrogen uptake and transport in trees. Journal of Experimental Botany, 2017, 68 (10): 2489- 2500.
doi: 10.1093/jxb/erx037 |
|
Chen M Y, Zhu K K, Xie J Y, et al. Ammonium-nitrate mixtures dominated by NH4+-N promote the growth of pecan (Carya illinoinensis) through enhanced N uptake and assimilation. Frontiers in Plant Science, 2023, 14, 1186818.
doi: 10.3389/fpls.2023.1186818 |
|
Corrêa A, Strasser R J, Martins-Loução M A. 2008. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza, 18(8): 413-427. | |
Couturier J, Montanini B, Martin F, et al. The expanded family of ammonium transporters in the perennial poplar plant. New Phytologist, 2007, 174 (1): 137- 150.
doi: 10.1111/j.1469-8137.2007.01992.x |
|
Deckmyn G, Meyer A, Smits M, et al. Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research, 2014, 44 (6): 535- 553.
doi: 10.1139/cjfr-2013-0496 |
|
Eltrop L, Marschner H. Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture: I. growth and mineral nutrient uptake in plants supplied with different forms of nitrogen. New Phytologist, 1996, 133 (3): 469- 478.
doi: 10.1111/j.1469-8137.1996.tb01914.x |
|
Esteban R, Ariz I, Cruz C, et al. Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 2016, 248, 92- 101.
doi: 10.1016/j.plantsci.2016.04.008 |
|
France R C, Reid C. Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Canadian Journal of Botany, 1983, 61 (3): 964- 984.
doi: 10.1139/b83-106 |
|
Hawkins B J, Robbins S. Comparison of ammonium, nitrate, and proton fluxes in mycorrhizal and nonmycorrhizal roots of lodgepole pine in contrasting nitrogen treatments. Canadian Journal of Forest Research, 2022, 52 (9): 1245- 1253.
doi: 10.1139/cjfr-2022-0066 |
|
Hrynkiewicz K, Baum C. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Environmental Technology, 2013, 34 (2): 225- 230.
doi: 10.1080/09593330.2012.689369 |
|
Jiao Y, Chen Y H, Ma C F, et al. Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens. Tree Physiology, 2018, 38 (1): 66- 82.
doi: 10.1093/treephys/tpx109 |
|
Juuti J T, Jokela S, Paulin L, et al. Suillus bovinus glutamine synthetase gene organization, transcription and enzyme activities in the Scots pine mycorrhizosphere developed on forest humus. New Phytologist, 2004, 164 (2): 389- 399.
doi: 10.1111/j.1469-8137.2004.01166.x |
|
Lasa B, Frechilla S, Aparicio-Tejo P M, et al. Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. Plant Physiology and Biochemistry, 2002, 40 (11): 969- 976.
doi: 10.1016/S0981-9428(02)01451-1 |
|
Leberecht M, Dannenmann M, Tejedor J, et al. 2016. Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant, Cell & Environment, 39(12): 2691-2700. | |
Li H, Li M C, Luo J, et al. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow-and fast-growing Populus species. Journal of Experimental Botany, 2012, 63 (17): 6173- 6185.
doi: 10.1093/jxb/ers271 |
|
Li J J, Liu X Y, Xu L Q, et al. Low nitrogen stress-induced transcriptome changes revealed the molecular response and tolerance characteristics in maintaining the C/N balance of sugar beet (Beta vulgaris L.). Frontiers in Plant Science, 2023, 14, 1164151.
doi: 10.3389/fpls.2023.1164151 |
|
Liese R, Lübbe T, Albers N W, et al. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiology, 2018, 38 (1): 83- 95.
doi: 10.1093/treephys/tpx131 |
|
Lu Y, Deng S R, Li Z R, et al. Physiological characteristics and transcriptomic dissection in two root segments with contrasting net fluxes of ammonium and nitrate of poplar under low nitrogen availability. Plant and Cell Physiology, 2022, 63 (1): 30- 44.
doi: 10.1093/pcp/pcab137 |
|
Luo Z B, Janz D, Jiang X N, et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology, 2009, 151 (4): 1902- 1917.
doi: 10.1104/pp.109.143735 |
|
Ma Y L, He J L, Ma C F, et al. 2014. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens. Plant, Cell & Environment, 37(3): 627-642. | |
Martin T, Oswald O, Graham I A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiology, 2002, 128 (2): 472- 481.
doi: 10.1104/pp.010475 |
|
Martins A, Casimiro A, Pais M S. Influence of mycorrhization on physiological parameters of micropropagated Castanea sativa Mill. plants. Mycorrhiza, 1997, 7 (3): 161- 165. | |
Masclaux-Daubresse C, Daniel V F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 2010, 105 (7): 1141- 1157. | |
Meng S, Wang S, Quan J, et al. Distinct carbon and nitrogen metabolism of two contrasting poplar species in response to different N supply levels. International Journal of Molecular Sciences, 2018, 19 (8): 2302.
doi: 10.3390/ijms19082302 |
|
Moreau D, Bardgett R D, Finlay R D, et al. A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33 (4): 540- 552.
doi: 10.1111/1365-2435.13303 |
|
Nunes-Nesi A, Fernie A R, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 2010, 3 (6): 973- 996.
doi: 10.1093/mp/ssq049 |
|
Plassard C, GuerinL A, Véry A A, et al. 2002. Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant, Cell & Environment, 25 (1): 75−84. | |
Ranathunge K, El-Kereamy A, Gidda S, et al. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany, 2014, 65 (4): 965- 979.
doi: 10.1093/jxb/ert458 |
|
Reyes T H, Scartazza A, Lu Y, et al. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2016, 105, 195- 202.
doi: 10.1016/j.plaphy.2016.04.030 |
|
Rineau F, Shah F, Smits M, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. The ISME Journal, 2013, 7 (10): 2010- 2022.
doi: 10.1038/ismej.2013.91 |
|
Sa G, Yao J, Deng C, et al. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. New Phytologist, 2019, 222 (4): 1951- 1964.
doi: 10.1111/nph.15740 |
|
Selle A, Willmann M, Grunze N, et al. The high affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytologist, 2005, 168 (3): 697- 706.
doi: 10.1111/j.1469-8137.2005.01535.x |
|
Shen F, Qin Y J, Wang R, et al. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nature Communications, 2023, 14 (1): 4334.
doi: 10.1038/s41467-023-40002-9 |
|
Shi W G, Liu W, Yu W, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. Journal of Hazardous Materials, 2019, 362, 275- 285.
doi: 10.1016/j.jhazmat.2018.09.024 |
|
Siemens J A, Calvo-Polanco M, Zwiazek J J. Hebeloma crustuliniforme facilitates ammonium and nitrate assimilation in trembling aspen (Populus tremuloides) seedlings. Tree Physiology, 2011, 31 (11): 1238- 1250. | |
Smith S E, Read D J. 2008. Mycorrhizal symbiosis (Third Edition). NewYork: Academic Press. | |
Sousa N R, Ramos M A, Marques A P G C, et al. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Science of the Total Environment, 2012, 414, 63- 67.
doi: 10.1016/j.scitotenv.2011.10.053 |
|
Sun P F, Cheng R M, Xiao W F, et al. The relationship between ectomycorrhizal fungi, nitrogen deposition, and Pinus massoniana seedling nitrogen transporter gene expression and nitrogen uptake kinetics. Journal of Fungi, 2022, 9 (1): 65.
doi: 10.3390/jof9010065 |
|
Sun W F, Huang A B, Sang Y Y, et al. Carbon–nitrogen interaction modulates plant growth and expression of metabolic genes in rice. Journal of Plant Growth Regulation, 2013, 32 (3): 575- 584.
doi: 10.1007/s00344-013-9324-x |
|
Szuba A, Karliński L, Krzesłowska M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant and Soil, 2017, 412 (1/2): 253- 266. | |
Szuba A. Ectomycorrhiza of Populus. Forest Ecology and Management, 2015, 347, 156- 169.
doi: 10.1016/j.foreco.2015.03.012 |
|
Szuba A, Marczak L, Kozlowski R. Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress. Environment Pollution, 2020, 264, 114585.
doi: 10.1016/j.envpol.2020.114585 |
|
Szuba A, Marczak Ł, Kozłowski R. Pb Stress and Ectomycorrhizas: strong protective proteomic responses in poplar roots inoculated with Paxillus involutus isolate and characterized by low root colonization intensity. International Journal of Molecular Sciences, 2021, 22 (9): 4300.
doi: 10.3390/ijms22094300 |
|
Waese J, Provart N J. The bio-analytic resource for plant biology. Methods in Molecular Biology, 2017, 1533, 119- 148. | |
Wright D, Scholes J, Read D, et al. 2000. Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant, Cell & Environment, 23(1): 39-49. | |
Zhang J H, He N P, Liu C C, et al. Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 2020, 26 (4): 2534- 2543.
doi: 10.1111/gcb.14973 |
|
Zhang Y, Li B Z, Liu F, et al. Transcriptomic and physiological analysis revealed the ammonium tolerance mechanisms of Myriophyllum aquaticum. Environmental and Experimental Botany, 2021, 187, 104462.
doi: 10.1016/j.envexpbot.2021.104462 |
|
Zhao L, Chen P F, Liu P, et al. Genetic effects and expression patterns of the nitrate transporter (NRT) gene family in Populus tomentosa. Frontiers in Plant Science, 2021, 12, 661635.
doi: 10.3389/fpls.2021.661635 |
|
Zheng Z L. Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling & Behavior, 2009, 4 (7): 584- 591. | |
Zhou J, Yang L Y, Chen X, et al. Genome-wide identification and characterization of the NF-YA gene family and its expression in response to different nitrogen forms in Populus× canescens. International Journal of Molecular Sciences, 2022, 23 (19): 11217.
doi: 10.3390/ijms231911217 |
[1] | 张时馨,耿阳阳,周汀,王纪辉,胡伯凯,刘亚娜. 橙黄乳菇对马尾松和华山松幼苗生长及根系代谢物的调控[J]. 林业科学, 2024, 60(9): 50-58. |
[2] | 邱啸林, 王姝敏, 余璐, 杨宇辰, 熊典广, 田呈明. 杨树腐烂病菌SNARE蛋白CcNyv1的功能[J]. 林业科学, 2024, 60(9): 90-98. |
[3] | 王傲宇,郭有正,邓坦,刘洋,邸楠,段劼,李熙萌,席本野. 几种评价植物水分调节策略的方法对比——以毛白杨为例[J]. 林业科学, 2024, 60(8): 109-119. |
[4] | 朱丽琴,黄荣珍,彭志远,邹显花,廖迎春,李静凯,陈光水. 植物地下觅养性状对土壤富磷斑块塑性响应的研究进展[J]. 林业科学, 2024, 60(5): 191-200. |
[5] | 冯学瑞,马亚平,刘佳欣,陆晖,李运毛,曹兵. CO2浓度升高处理下宁夏枸杞糖代谢相关酶及基因表达分析[J]. 林业科学, 2024, 60(3): 10-21. |
[6] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[7] | 黄梦遥, 张润哲, 史策, 杨昊, 魏一凡, 张兆德, 祝琳, 宋连君, 聂立水, 王登芝. 不同施氮量和灌水水平下毛白杨林地土壤矿质氮动态[J]. 林业科学, 2023, 59(9): 45-54. |
[8] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[9] | 韩璐,赵涵,王薇,刘文辉,姜在民,蔡靖. 白杨杂交子代栓塞脆弱性分割及与生长的关系[J]. 林业科学, 2023, 59(3): 94-103. |
[10] | 王卫锋,赵瑜琦,高苗琴,宗毓铮,郝兴宇. 群众杨幼苗叶光合特性与碳氮分配对CO2浓度和气温升高的响应[J]. 林业科学, 2023, 59(2): 40-47. |
[11] | 赵蕊蕊,刘勇,王凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响[J]. 林业科学, 2023, 59(11): 1-11. |
[12] | 王薇,赵涵,黄欣,侯卓梁,姜在民,蔡靖. 白杨无性系叶片水力及经济性状与生物量的关系[J]. 林业科学, 2023, 59(10): 89-98. |
[13] | 黄金莲,崔鸿侠,唐万鹏,胡琛,马致远,雷静品. 虫害对华山松人工林土壤酶活性及碳氮磷化学计量特征的影响[J]. 林业科学, 2023, 59(10): 128-137. |
[14] | 李敏, 赵熙州, 王好运, 卢中科, 丁贵杰. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7): 63-72. |
[15] | 王娜,王佳茜,李国雷,李箐,朱琳,李田,刘文. 栓皮栎种子萌发出苗特征与生理生化变化[J]. 林业科学, 2022, 58(4): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||