林业科学 ›› 2024, Vol. 60 ›› Issue (1): 93-102.doi: 10.11707/j.1001-7488.LYKX20230202
收稿日期:
2023-05-14
出版日期:
2024-01-25
发布日期:
2024-01-29
通讯作者:
陈清西
E-mail:.cqx0246@163.com
基金资助:
Yue Fan,Peirun Luo,Wei Wang,Qian Xie,Qingxi Chen*()
Received:
2023-05-14
Online:
2024-01-25
Published:
2024-01-29
Contact:
Qingxi Chen
E-mail:.cqx0246@163.com
摘要:
目的: 从印度梨形孢入手,建立印度梨形孢与杜鹃共生体系,为提高现有园林绿化杜鹃的抗旱性提供新思路。方法: 采用国内园林绿地常用锦绣杜鹃品种‘紫蝴蝶’,持续浇灌印度梨形孢菌液6次,共计30天,建立印度梨形孢与杜鹃共生体系,探究定殖印度梨形孢的杜鹃植株形态结构变化,评价印度梨形孢对杜鹃抗旱性的作用及部分相关生理生化指标的变化。结果: 浇灌印度梨形孢菌液4次(第20天)后发现印度梨形孢已逐步定殖于杜鹃根系,浇灌5、6次(第25、30天)后的定殖率分别达91.67%、100%。定殖30天后的杜鹃叶片鲜质量、干质量、叶面积增大,叶片解剖结构的上、下表皮厚度减小,栅栏组织与栅海比增大,叶片结构更紧密,根细胞截面积增大。随着干旱胁迫时间延长,定殖印度梨形孢的杜鹃生长状态较好,干旱胁迫20天后存活率高,叶片相对电导率、脯氨酸含量、丙二醛含量、超氧化物歧化酶活性随干旱时间延长的差异不显著,半致死时间显著延长,受胁迫程度轻,抗旱性显著增强。结论: 锦绣杜鹃能与印度梨形孢建立互利共生关系,从而提高其对干旱胁迫的抗性。印度梨形孢可作为提高园林绿化植物杜鹃抗旱性的一种菌剂进行应用。
中图分类号:
樊玥,罗培润,王威,谢倩,陈清西. 印度梨形孢与杜鹃共生体系建立及提高抗旱性效应[J]. 林业科学, 2024, 60(1): 93-102.
Yue Fan,Peirun Luo,Wei Wang,Qian Xie,Qingxi Chen. Establishment of Symbiotic System of Piriformospora indica and Rhododendron and Its Effect on Improving Drought Resistance[J]. Scientia Silvae Sinicae, 2024, 60(1): 93-102.
表1
干旱胁迫下杜鹃叶片形态等级标准"
等级 Grade | 叶片生长情况 Leaf growth |
0 | 生长状态良好,无萎蔫现象出现 The growth state is good, no wilting phenomenon appears. |
1 | 幼叶反卷,10%以下叶片出现萎蔫、下垂、皱缩现象 The young leaves rolled back, leaves below 10% appear wilting, drooping and shrinking. |
2 | 幼叶反卷,10%~29%以下叶片出现萎蔫、下垂、皱缩现象 The young leaves rolled back, leaves below 10%-29% appear wilting, drooping and shrinking. |
3 | 幼叶反卷,30%~59%以下叶片出现萎蔫、下垂、皱缩现象 The young leaves rolled back, leaves below 30%-59% appear wilting, drooping and shrinking. |
4 | 幼叶反卷,60%以上叶片出现萎蔫、下垂、皱缩现象 The young leaves rolled back, more than 60% leaves appear wilting, drooping and shrinking. |
陈树钢, 丁彦芬. 以电导法配合Logistic方程确定5种景天属植物耐旱性. 江苏农业科学, 2011, 39 (3): 213- 216. | |
Chen S G, Ding Y F. Determination of drought tolerance of 5 species of Sedum by conductance method and Logistic equation. Jiangsu Agricultural Sciences, 2011, 39 (3): 213- 216. | |
高晓宁, 赵 冰, 刘旭梅, 等. 4个杜鹃花品种对干旱胁迫的生理响应及抗旱性评价. 浙江农林大学学报, 2017, 34 (4): 597- 607. | |
Gao X N, Zhao B, Liu X M, et al. Physiological response to drought stress and drought resistance evaluation of four Rhododendron cultivars. Journal of Zhejiang A & F University, 2017, 34 (4): 597- 607. | |
李 婧, 汤升虎, 童 琪, 等. 杜鹃属植物及在园林景观中的应用. 现代园艺, 2020, 43 (15): 66- 68. | |
Li J, Tang S H, Tong Q, et al. Rhododendron and its application in garden landscape. Modern Gardening, 2020, 43 (15): 66- 68. | |
林振显. 福鼎市城区主要道路绿化树种调查及分析. 乡村科技, 2021, 12 (17): 94- 97. | |
Lin Z X. Investigation and analysis of greening tree species on main roads in Fuding city. Rural Technology, 2021, 12 (17): 94- 97. | |
刘晓曦. 2015. 印度梨形孢培养条件优化和剂型研制及在油菜上的应用研究. 杭州: 浙江大学. | |
Liu X X. 2015. Optimization of culture conditions and formulation development of Piriformospora indica and its application in rapeseed. Hangzhou: Zhejiang University. [in Chinese] | |
刘 影, 赵禹宁. 2015. 杜鹃花属植物在北方园林中的应用. 中国林副特产, (2): 74-75. | |
Liu Y, Zhao Y N. 2015. Utilization of Rhododendron L. in garden in northern area of China. Forest by-Product and Speciality in China, (2): 74-75. [in Chinese] | |
蒲 尧. 2021. 印度梨形孢对小白菜生物量、品质以及硒累积的影响. 荆州: 长江大学. | |
Pu Y. 2021. Effects of Piriformospora indica on biomass, quality and selenium accumulation of Chinese cabbage. Jingzhou: Changjiang University. [in Chinese] | |
沈荫椿. 2016. 杜鹃花. 北京: 中国林业出版社. | |
Shen Y C. 2016. Azaleas. Beijing: China Forestry Publishing House. [in Chinese] | |
史清英. 2015. 三叶青茎段外植体组织培养体系的优化及印度梨形孢对其生长的影响. 杭州: 浙江大学. | |
Shi Q Y. 2015. Optimization of tissue culture system for stem explants of Tetrastigma hemsleyanum and effect of Piriformospora indica on its growth. Hangzhou: Zhejiang University. [in Chinese] | |
宋明波, 穆立蔷. 杜鹃属植物资源及园林应用. 特种经济动植物, 2022, 25 (2): 103- 104. | |
Song M B, Mu L Q. Resources of Rhododendron and its landscape application. Special Economic Animal and Plant, 2022, 25 (2): 103- 104. | |
孙 超. 2010. 印度梨形孢诱导小白菜抗病、促生、抗逆的作用及其机理的初步研究. 杭州: 浙江大学. | |
Sun C. 2010. Preliminary study on the role and mechanism of Piriformospora indica in inducing disease resistance, growth promotion and stress resistance of Chinese cabbage. Hangzhou: Zhejiang University. [in Chinese] | |
汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义. 植物生理学通讯, 1984, (1): 15- 21. | |
Tang Z C. Accumulation of proline in plants under stress and its possible significance. Plant Physiology Communications, 1984, (1): 15- 21. | |
唐明作. 2021. 菌根真菌提高杨树耐旱耐盐性. 咸阳: 西北农林科技大学出版社. | |
Tang M Z. 2021. Mycorrhizal fungi improve drought and salt tolerance of poplar. Xianyang: Northwest A & F University Press. [in Chinese] | |
王宝山. 2010. 逆境植物生物学. 北京: 高等教育出版社. | |
Wang B S. 2010. Plant biology under stress. Beijing: Higher Education Press. [in Chinese] | |
王慧俐. 2015. 印度梨形孢Piriformospora indica对果蔬生长、品质及抗病性的影响及其相关机制研究. 杭州: 浙江大学. | |
Wang H L. 2015. Effects of Piriformospora indica on the growth, quality and disease resistance of fruits and vegetables and its related mechanisms. Hangzhou: Zhejiang University. [in Chinese] | |
王建华, 刘鸿先, 徐 同. 超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用. 植物生理学通讯, 1989, (1): 1- 7. | |
Wang J H, Liu H X, Xu T. The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant. Plant Physiology Communications, 1989, (1): 1- 7. | |
王学奎, 黄见良. 2015. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 306. | |
Wang X K, Huang J L. 2015. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press. [in Chinese] | |
韦 巧. 2017. 印度梨形孢溶磷特性及促进甘蓝型油菜磷吸收的研究. 荆州: 长江大学. | |
Wei Q. 2017. Character of phosphate soublizing of Piriformospora indica and effects on phosphours absorption in Brassica naups. Jingzhou: Changjiang University. [in Chinese] | |
魏志刚, 王玉成. 2015. 植物干旱胁迫响应机制. 北京: 科学出版社. | |
Wei Z G, Wang Y C. 2015. Response mechanism of plant to drought stress. Beijing: Science Press. [in Chinese] | |
徐 忠, 张春英. 2014. 上海杜鹃花栽培及应用. 北京: 中国林业出版社. | |
Xu Z, Zhang C Y. 2014. Cultivation and application of Rhododendron in Shanghai. Beijing: China Forestry Publishing House. [in Chinese] | |
叶 菁, 晏琴梅, 魏 晖, 等. 杜鹃不同品种在园林中配置及应用方式. 绿色科技, 2020, (23): 46- 48. | |
Ye J, Yan Q M, Wei H, et al. Configuration and application of different varieties of Rhododendron in gardens. Green Technology, 2020, (23): 46- 48. | |
张长芹. 2003. 杜鹃花. 北京: 中国建筑工业出版社. | |
Zhang C Q. 2003. Azalea. Beijing: China Architecture & Building Press. [in Chinese] | |
郑 颖. 2018. 6个新引进杜鹃品种的抗旱性评价. 福州: 福建农林大学. | |
Zheng Y. 2018. Drought resistance evaluation of 6 newly introduced Rhododendron varieties. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | |
Bidartondo M I, Redecker D, Hijri I, et al. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 2002, 419 (6905): 389- 392.
doi: 10.1038/nature01054 |
|
Blum A. 2011. Drought resistance—is it really a complex trait? Functional Plant Biology, 38(10): 753-757. | |
Bonfante P, Anca I. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annual Review of Microbiology, 2009, 63, 363- 383.
doi: 10.1146/annurev.micro.091208.073504 |
|
Cao J L, He W X, Zou Y N, et al. An endophytic fungus, Piriformospora indica, enhances drought tolerance of trifoliate orange by modulating the antioxidant defense system and composition of fatty acids. Tree Physiology, 2023, 43 (3): 452- 466. | |
Diagne N, Ngom M, Djighaly P I, et al. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity, 2020, 12 (10): 370.
doi: 10.3390/d12100370 |
|
Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015, 72 (4): 673- 689.
doi: 10.1007/s00018-014-1767-0 |
|
Fathi A, Tari D B. Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 2016, 10 (1): 1- 6.
doi: 10.3126/ijls.v10i1.14509 |
|
Ghabooli M, Rezaei E, Movahedi Z, et al. Effect of Piriformospora indica inoculation on some morphophysiological parameters in licorice (Glycyrrhiza glabra L.) under drought stress. Iranian Journal of Plant Physiology, 2020, 10 (4): 3379- 3389. | |
Ghaffari M R, Mirzaei M, Ghabooli M, et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environmental and Experimental Botany, 2019, 157, 197- 210.
doi: 10.1016/j.envexpbot.2018.10.002 |
|
Guo Z H, Liu X Q, Su J L, et al. Species diversity of Rhododendron shrub communities and utilization of Rhododendron resources in urban green spaces of Nanjing. Tropical Ecology, 2022, 63 (4): 506- 521.
doi: 10.1007/s42965-022-00219-z |
|
Hosseini F, Mosaddeghi M R, Dexter A R. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiology and Biochemistry, 2017, 118, 107- 120.
doi: 10.1016/j.plaphy.2017.06.005 |
|
Hosseini F, Mosaddeghi M R, Dexter A R, et al. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses. Planta, 2018, 247 (5): 1229- 1245.
doi: 10.1007/s00425-018-2861-6 |
|
Hussain S, Rao M J, Anjum M A, et al. 2019. Oxidative stress and antioxidant defense in plants under drought conditions//Hasanuzzaman M, Hakeem K R, Nahar K. eds. Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches. Berlin: Springer, 207−219. | |
Hussin S, Khalifa W, Geissler N, et al. Influence of the root endophyte Piriformospora indica on the plant water relations, gas exchange and growth of Chenopodium quinoa at limited water availability. Journal of Agronomy and Crop Science, 2017, 203 (5): 373- 384.
doi: 10.1111/jac.12199 |
|
Kaya C, Ashraf M, Wijaya L, et al. The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiology and Biochemistry, 2019, 143, 119- 128.
doi: 10.1016/j.plaphy.2019.08.024 |
|
Lynn J, Peeva N. Communications in the IPCC’s sixth assessment report cycle. Climatic Change, 2021, 169 (1/2): 18. | |
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 2005, 444 (2): 139- 158.
doi: 10.1016/j.abb.2005.10.018 |
|
Oelmüller R, Sherameti I, Tripathi S, et al. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 2009, 49 (1): 1- 17.
doi: 10.1007/s13199-009-0009-y |
|
Patel J A, Vora A B. Free proline accumulation in drought-stressed plants. Plant and Soil, 1985, 84 (3): 427- 429.
doi: 10.1007/BF02275480 |
|
Pooja J, Kanwar S P, Alka B, et al. Role of Serendipita indica in enhancing drought tolerance in crops. Physiological and Molecular Plant Pathology, 2021, 116, 101691.
doi: 10.1016/j.pmpp.2021.101691 |
|
Sahay N S, Varma A. Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiology Letters, 1999, 181 (2): 297- 302.
doi: 10.1111/j.1574-6968.1999.tb08858.x |
|
Scandalios J G. Oxygen stress and superoxide dismutases. Plant Physiology, 1993, 101 (1): 7- 12.
doi: 10.1104/pp.101.1.7 |
|
Sun C, Johnson J M, Cai D G, et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 2010, 167 (12): 1009- 1017.
doi: 10.1016/j.jplph.2010.02.013 |
|
Tsai H J, Shao K H, Chan M T, et al. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signaling & Behavior, 2020, 15 (2): 1722447. | |
Varma A, Khanuja M. 2017. Role of nanoparticles on plant growth with special emphasis on Piriformospora indica: a review//Ghorbanpour M, Khanuja M, Varma A. eds. Nanoscience and plant-soil systems. Berlin: Springer, 387−403. | |
Verma S, Varma A, Rexer K, et al. Piriformospora indica, gen. et sp. nov. , a new root-colonizing fungus. Mycologia, 1998, 90 (5): 896- 903. | |
Vogelmann T C, Martin G. 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment, 16(1): 65−72. | |
Zhang H, Sun X P, Dai M Q. Improving crop drought resistance with plant growth regulators and rhizobacteria: mechanisms, applications, and perspectives. Plant Communications, 2022, 3 (1): 100228.
doi: 10.1016/j.xplc.2021.100228 |
|
Zhang W Y, Wang J, Xu L, et al. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signaling & Behavior, 2018, 13 (1): e1414121. |
[1] | 牛耕耘,李东宾,谭贝贝,徐婧,魏美才. 危害云锦杜鹃的简脉茎蜂属一新种(膜翅目:茎蜂科)及系统学意义[J]. 林业科学, 2023, 59(3): 145-151. |
[2] | 刘鸣,乌尔里希·皮特扎卡,安德烈亚斯·罗洛夫,张德顺. 不同生境中多树种生长对干旱胁迫的敏感性评价——以德国萨克森州为例[J]. 林业科学, 2023, 59(11): 12-22. |
[3] | 王立祥,崔树鹏,孔露露,王萱,杨宗基,任利利,骆有庆. 内生真菌对新渡户树蜂共生真菌的抑制作用[J]. 林业科学, 2022, 58(5): 113-120. |
[4] | 彭金根,龚金玉,范玉海,张华,张银凤,白宇清,王艳梅,谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. |
[5] | 许塔艳,全文选,李朝婵,潘延楠,谢利娟,郝江涛,高永道. 野生杜鹃林土壤低分子量有机酸分布特征[J]. 林业科学, 2021, 57(8): 24-32. |
[6] | 黄承玲,姚刚,田晓玲,任永权,黄家湧,马永鹏. 基于RAD高通量测序的贵州百里杜鹃保护区杜鹃花属分类[J]. 林业科学, 2021, 57(2): 72-81. |
[7] | 龚金玉,彭金根,谢利娟,张银凤,李朝婵,王艳梅. 深圳梧桐山不同树势毛棉杜鹃根际土壤微生物多样性分析[J]. 林业科学, 2021, 57(11): 190-200. |
[8] | 田奥,王加国,韩振诚,吴佳伟,李苇洁. 百里杜鹃林区马缨杜鹃凋落物花叶混合比例对分解的影响[J]. 林业科学, 2020, 56(8): 1-10. |
[9] | 保敏,乔海莉,石娟,骆有庆,陆鹏飞. 重大入侵害虫松树蜂繁殖行为及化学生态调控研究进展[J]. 林业科学, 2020, 56(6): 127-141. |
[10] | 杨阳,王海洋,马立辉. 濒危植物树枫杜鹃的结实及种子萌发特性[J]. 林业科学, 2020, 56(10): 173-183. |
[11] | 靳微,杨预展,孙海菁,陈连庆,袁志林. 弗吉尼亚栎母树林外生菌根的真菌多样性[J]. 林业科学, 2020, 56(1): 120-132. |
[12] | 张江涛, 杨淑红, 朱镝, 朱延林, 刘友全. 美洲黑杨2025及其2个芽变品种苗对持续干旱的生理响应及抗旱性评价[J]. 林业科学, 2018, 54(6): 33-43. |
[13] | 郭慧, 王霄, 刘传泽, 周玉成. 基于灰度共生矩阵和分层聚类的刨花板表面图像缺陷提取方法[J]. 林业科学, 2018, 54(11): 111-120. |
[14] | 张华, 聂艳, 王定跃, 谢利娟. 乙烯利和多效唑对簕杜鹃生长开花及生理特性的影响[J]. 林业科学, 2018, 54(10): 46-55. |
[15] | 杜明凤, 丁贵杰, 赵熙州. 不同家系马尾松对持续干旱的响应及抗旱性[J]. 林业科学, 2017, 53(6): 21-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||