|
党宏忠, 陈 帅, 钟 鹏, 等. 樟子松人工林自然更新过程中断的机制及可能调控途径. 林业科学, 2024, 60 (12): 158- 167.
doi: 10.11707/j.1001-7488.LYKX20240077
|
|
Dang H Z, Chen S, Zhong P, et al. Mechanism and possible regulatory approaches of interruption in the natural regeneration process of Pinus sylvestris var. mongolica plantations in China. Scientia Silvae Sinicae, 2024, 60 (12): 158- 167.
doi: 10.11707/j.1001-7488.LYKX20240077
|
|
段 河, 张建波, 张忠旺. 内蒙古三北工程区退化林现状分析与修复建议. 林业资源管理, 2022, (1): 174- 179.
|
|
Duan H, Zhang J B, Zhang Z W. Status analysis and restoration suggestions of degraded forest in Three-North engineering area of Inner Mongolia. Forest Resource Management, 2022, (1): 174- 179.
|
|
范志平, 曾德慧, 冀晓燕, 等. 农田防护林生态系统经营管理研究. 北京林业大学学报, 2004, 26 (4): 81- 84.
|
|
Fan Z P, Zeng D H, Ji X Y, et al. Advances in management of farmland shelterbelt ecosystems. Journal of Beijing Forestry University, 2004, 26 (4): 81- 84.
|
|
兰 倩, 陈绍志, 邬可义, 等. 退化林修复研究进展. 世界林业研究, 2021, 34 (5): 50- 57.
|
|
Lan Q, Chen S Z, Wu K Y, et al. Progress of degraded forests restoration research. World Forestry Research, 2021, 34 (5): 50- 57.
|
|
刘世荣. 2024. 实现“双碳”如何用好森林这座富矿. 学习时报, https://www.forestry.gov.cn/c/www/sl/548888.jhtml.
|
|
Liu S R. 2024. Achieving "Dual Carbon" goals: How to make good use of forests as a rich mine. Study Times, https://www.forestry.gov.cn/c/www/sl/548888.jhtml. [in Chinese]
|
|
卢 琦, 肖春蕾, 包英爽, 等. 打赢“三北”攻坚战, 再造一个“新三北”: 实现路径与战略规划. 中国科学院院刊, 2023, 38 (7): 956- 965.
|
|
Lu Q, Xiao C L, Bao Y S, et al. Implementation path and strategic planning of winning the battle of “Three-North” and reconstructing “New Three-North”. Bulletin of Chinese Academy of Sciences, 2023, 38 (7): 956- 965.
|
|
路伟伟, 吴 波, 白建华, 等. 樟子松人工林退化原因及研究展望. 科学通报, 2023, 68 (11): 1286- 1297.
|
|
Lu W W, Wu B, Bai J H, et al. Causes and research prospects of the decline of Pinus sylvestris var. mongolica plantation. Science Bulletin, 2023, 68 (11): 1286- 1297.
|
|
任 海, 彭少麟, 陆宏芳. 退化生态系统恢复与恢复生态学. 生态学报, 2004, 24 (8): 1756- 1764.
|
|
Ren H, Peng S L, Lu H F. The restoration of degraded ecosystem and restoration ecology. Acta Ecologica Sinica, 2004, 24 (8): 1756- 1764.
|
|
孙立博, 余新晓, 陈丽华, 等. 坝上高原杨树人工林的枯落物及土壤水源涵养功能退化. 水土保持学报, 2019, 33 (1): 104- 110.
|
|
Sun L B, Yu X X, Chen L H, et al. Degradation of litter and soil water conservation function of poplar plantation in Bashang Plateau. Journal of Soil and Water Conservation, 2019, 33 (1): 104- 110.
|
|
于贵瑞, 谢高地, 王秋凤, 等. 西部地区植被恢复重建中几个问题的思考. 自然资源学报, 2002, 17 (2): 216- 220.
doi: 10.3321/j.issn:1000-3037.2002.02.014
|
|
Yu G R, Xie G D, Wang Q F, et al. Considerations to some issues on vegetation rehabilitation in western China. Journal of Natural Resources, 2002, 17 (2): 216- 220.
doi: 10.3321/j.issn:1000-3037.2002.02.014
|
|
王 锋, 卢 琦. 沙地樟子松散生单木的天然更新幼苗空间分布模型. 林业科学, 2019, 55 (8): 1- 8.
doi: 10.11707/j.1001-7488.20190801
|
|
Wang F, Lu Q. A spatial-explicit seedling recruitment model for scattered individual trees of Pinus sylvestris var. mongolica. Scientia Silvae Sinicae, 2019, 55 (8): 1- 8.
doi: 10.11707/j.1001-7488.20190801
|
|
张 欢, 曹 俊, 王化冰, 等. 张北地区退化杨树防护林的水分利用特征. 应用生态学报, 2018, 29 (5): 1381- 1388.
|
|
Zhang H, Cao J, Wang H B, et al. Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China. The journal of applied ecology, 2018, 29 (5): 1381- 1388.
|
|
张新时. 关于生态重建和生态恢复的思辨及其科学涵义与发展途径. 植物生态学报, 2010, 34 (1): 112- 118.
doi: 10.3773/j.issn.1005-264x.2010.01.014
|
|
Zhang X S. An intellectual enquiring about ecological restoration and recovery, their scientific implication and approach. Chinese Journal of Plant Ecology, 2010, 34 (1): 112- 118.
doi: 10.3773/j.issn.1005-264x.2010.01.014
|
|
赵 平, 彭少麟, 张经炜. 恢复生态学——退化生态系统生物多样性恢复的有效途径. 生态学杂志, 2000, 19 (1): 53- 58.
doi: 10.3321/j.issn:1000-4890.2000.01.009
|
|
Zhao P, Peng S L, Zhang J W, et al. Restoration ecology — An effective way to restore biodiversity of degraded ecosystems. Chinese Journal of Ecology, 2000, 19 (1): 53- 58.
doi: 10.3321/j.issn:1000-4890.2000.01.009
|
|
朱教君, 郑 晓. 2019. 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38(5): 1600−1610.
|
|
Zhu J J, Zheng X. 2019. The prospects of development of the Three-North Afforestation Program ( TNAP) : on the basis of the results of the 40-year construction general assessment of the TNAP. Chinese Journal of Ecology, 38(5): 1600−1610. [in Chinese]
|
|
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001
|
|
Gampe D, Zscheischler J, Reichstein M, et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 2021, 11 (9): 772- 779.
doi: 10.1038/s41558-021-01112-8
|
|
Jiao W Z, Wang L X, Smith W K, et al. Observed increasing water constraint on vegetation growth over the last three decades. Nature Communications, 2021, 12 (1): 3777.
doi: 10.1038/s41467-021-24016-9
|
|
Qi K, Zhu J J, Zheng X, et al. Impacts of the world’s largest afforestation program (Three-North Afforestation Program) on desertification control in sandy land of China. Giscience & Remote Sensing, 2023, 60 (1): 2167574.
|
|
Smith M D, Wilkins K D, Holdrege M C, et al. 2024. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proceedings of the National Academy of Sciences, 121(4): e1985086176.
|
|
Vernon M J, Sherriff R L, van Mantgem P, et al. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. Forest Ecology and Management, 2018, 422, 190- 198.
doi: 10.1016/j.foreco.2018.03.043
|
|
Yan Z, Guo Y, Sun B, et al. Combating land degradation through human efforts: Ongoing challenges for sustainable development of global drylands. Journal of Environmental Management, 2024, 354, 120254.
doi: 10.1016/j.jenvman.2024.120254
|
|
Yin J B, Gentine P, Slater L, et al. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nature Sustainability, 2023, 6 (3): 259- 272.
doi: 10.1038/s41893-022-01024-1
|
|
Yuan X, Wang Y M, Ji P, et al. A global transition to flash droughts under climate change. Science, 2023, 380 (6641): 187- 191.
doi: 10.1126/science.abn6301
|