|
陈 强, 王 艳, 翟华敏. 基于TG-FTIR和Py-GC-MS分析的椰壳热解特性研究. 林产化学与工业, 2020, 40 (1): 45- 52.
doi: 10.3969/j.issn.0253-2417.2020.01.007
|
|
Chen Q, Wang Y, Zhai H M. Pyrolysis characteristics of coconut shell based on TG-FTIR and Py-GC-MS analysis. Chemistry and Industry of Forest Products, 2020, 40 (1): 45- 52.
doi: 10.3969/j.issn.0253-2417.2020.01.007
|
|
邓丛静, 马欢欢, 王亮才, 等. 杏壳半纤维素的结构表征与热解产物特性. 林业科学, 2019, 55 (1): 74- 80.
doi: 10.11707/j.1001-7488.20190109
|
|
Deng C J, Ma H H, Wang L C, et al. Structure characterization and pyrolysis properties of apricot shell hemicellulose. Scientia Silvae Sinicae, 2019, 55 (1): 74- 80.
doi: 10.11707/j.1001-7488.20190109
|
|
蒋新元, 廖媛媛, 郭 忠, 等. 7种果壳的热解特性及与主要组分相关性分析. 林业科学, 2015, 51 (12): 79- 86.
|
|
Jiang X Y, Liao Y Y, Guo Z, et al. Pyrolysis characteristics and correlation analysis with the major components of seven kinds of nutshell. Scientia Silvae Sinicae, 2015, 51 (12): 79- 86.
|
|
江泽慧, 岳祥华, 费本华, 等. 2020. 中国竹类植物图鉴. 北京: 科学出版社.
|
|
Jiang Z H, Yue X H, Fei B H, et al. 2020. Illustrations of bamboos in China. Beijing: Science Press.[in Chinese]
|
|
马中青, 马乾强, 王家耀, 等. 基于TG-FTIR和Py-GC/MS的生物质三组分快速热解机理研究. 科学技术与工程, 2017, 17 (9): 59- 66.
doi: 10.3969/j.issn.1671-1815.2017.09.010
|
|
Ma Z Q, Ma Q Q, Wang J Y, et al. Study on the fast pyrolysis mechanism of the three pseudocomponents of biomass (cellulose, hemi-cellulose and lignin) using TG-FTIR and py-GC/MS. Science Technology and Engineering, 2017, 17 (9): 59- 66.
doi: 10.3969/j.issn.1671-1815.2017.09.010
|
|
翁诗甫. 2016. 傅里叶变换红外光谱分析. 北京: 化学工业出版社.
|
|
Weng S F. 2016. Fourier transform infrared spectroscopy. Beijing: Chemical Industry Press.[in Chinese]
|
|
余 雁, 江泽慧, 王汉坤, 等. 2015. 一种竹材中薄壁细胞和纤维分离的方法. 北京: CN105150328A, 12−16.
|
|
Yu Y, Jiang Z H, Wang H K, et al. 2015. A method for separating parenchyma and fiber in bamboo. Beijing: CN105150328A, 12−16.[in Chinese]
|
|
Ball R, McIntosh A C, Brindley J. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combustion Theory and Modelling, 2004, 8 (2): 281- 291.
doi: 10.1088/1364-7830/8/2/005
|
|
Chen D, Zhou J, Zhang Q. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 2014, 169, 313- 319.
doi: 10.1016/j.biortech.2014.07.009
|
|
Chen H, Wu J, Shi J, et al. Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber. Industrial Crops and Products, 2021, 164, 113380.
doi: 10.1016/j.indcrop.2021.113380
|
|
Chen T Y, Wang B, Wu Y Y, et al. Structural variations of lignin macromolecule from different growth years of triploid of Populus tomentosa Carr . International Journal of Biological Macromolecules, 2017, 101, 747- 757.
doi: 10.1016/j.ijbiomac.2017.03.146
|
|
Czajka K M. The impact of the thermal lag on the interpretation of cellulose pyrolysis. Energy, 2021, 236, 121497.
doi: 10.1016/j.energy.2021.121497
|
|
Dai G, Wang G, Wang K, et al. Mechanism study of hemicellulose pyrolysis by combining in situ DRIFT, TGA-PIMS and theoretical calculation . Proceedings of the Combustion Institute, 2021, 38 (3): 4241- 4249.
doi: 10.1016/j.proci.2020.06.196
|
|
Fan F Y, Yang Z L, Xing X J. Study on the pyrolysis properties of corn straw by TG-FTIR and TG-GC/MS. Journal of Thermal Analysis and Calorimetry, 2021, 143 (5): 3783- 3791.
doi: 10.1007/s10973-020-09778-6
|
|
Hoekstra E, van Swaaij W P M, Kersten S R A, et al. Fast pyrolysis in a novel wire-mesh reactor: decomposition of pine wood and model compounds. Chemical Engineering Journal, 2012, 187, 172- 184.
doi: 10.1016/j.cej.2012.01.118
|
|
Li J, Bai X, Fang Y, et al. Comprehensive mechanism of initial stage for lignin pyrolysis. Combustion and Flame, 2020, 215, 1- 9.
doi: 10.1016/j.combustflame.2020.01.016
|
|
Li J S, Yao X W, Ge J, et al. Investigation on the pyrolysis process, products characteristics and BP neural network modelling of pine sawdust, cattle dung, kidney bean stalk and bamboo. Process Safety and Environmental Protection, 2022, 162, 752- 764.
doi: 10.1016/j.psep.2022.04.055
|
|
Li Y, Wang Y, Chai M, et al. Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis. Biomass and Bioenergy, 2023, 170, 106705- 106715.
doi: 10.1016/j.biombioe.2023.106705
|
|
Liu Q, Wang S, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 2008, 82 (1): 170- 177.
doi: 10.1016/j.jaap.2008.03.007
|
|
Ma Z, Chen D, Gu J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Conversion and Management, 2015, 89, 251- 259.
doi: 10.1016/j.enconman.2014.09.074
|
|
Patel A, Agrawal B, Rawal B R. 2020. Pyrolysis of biomass for efficient extraction of biofuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(13): 1649−1661.
|
|
Peng F, Ren J L, Xu F, et al. Fractionation of alkali-solubilized hemicelluloses from delignified Populus gansuensis: structure and properties. Journal of Agricultural and Food Chemistry, 2010, 58 (9): 5743- 5750.
doi: 10.1021/jf1003368
|
|
Rodríguez Correa C, Stollovsky M, Hehr T, et al. Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustainable Chemistry & Engineering, 2017, 5 (9): 8222- 8233.
|
|
Şensöz S, Angın D. Pyrolysis of safflower (Charthamus tinctorius L. ) seed press cake in a fixed-bed reactor: part 2. Structural characterization of pyrolysis bio-oils . Bioresource Technology, 2008, 99 (13): 5498- 5504.
doi: 10.1016/j.biortech.2007.11.004
|
|
Silveira E A, Luz S M, Leão R M, et al. Numerical modeling and experimental assessment of sustainable woody biomass torrefaction via coupled TG-FTIR. Biomass and Bioenergy, 2021, 146, 105981.
doi: 10.1016/j.biombioe.2021.105981
|
|
Wang H M, Wang B, Wen J L, et al. Structural characteristics of lignin macromolecules from different Eucalyptus species . ACS Sustainable Chemistry & Engineering, 2017, 5 (12): 11618- 11627.
|
|
Wang H, Wang X, Cui Y, et al. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): product yield prediction and biochar formation mechanism . Bioresource Technology, 2018, 263, 444- 449.
doi: 10.1016/j.biortech.2018.05.040
|
|
Wen J L, Sun Y C, Xu F, et al. Fractional isolation and chemical structure of hemicellulosic polymers obtained from Bambusa rigida species . Journal of Agricultural and Food Chemistry, 2010, 58 (21): 11372- 11383.
doi: 10.1021/jf1032153
|
|
Wu X, Ba Y, Wang X, et al. Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Bioresource Technology, 2018, 266, 407- 412.
doi: 10.1016/j.biortech.2018.07.005
|
|
Wu Z, Zhang B, Hu Q, et al. Products distribution and kinetic analysis on gaseous products during fast pyrolysis of two kinds of biomass pellet. Fuel, 2019, 249, 8- 14.
doi: 10.1016/j.fuel.2019.03.100
|
|
Yang H, Li S, Liu B, et al. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Fuel, 2020, 267, 117302.
doi: 10.1016/j.fuel.2020.117302
|
|
Yuan T, He W, Yin G, et al. Comparison of bio-chars formation derived from fast and slow pyrolysis of walnut shell. Fuel, 2020, 261, 116450.
doi: 10.1016/j.fuel.2019.116450
|
|
Zhao R, Wang X, Liu L, et al. Slow pyrolysis characteristics of bamboo subfamily evaluated through kinetics and evolved gases analysis. Bioresource Technology, 2019, 289, 121674.
doi: 10.1016/j.biortech.2019.121674
|
|
Zeng K, Gauthier D, Li R, et al. Solar pyrolysis of beech wood: effects of pyrolysis parameters on the product distribution and gas product composition. Energy, 2015, 93, 1648- 1657.
doi: 10.1016/j.energy.2015.10.008
|