林业科学 ›› 2024, Vol. 60 ›› Issue (5): 127-138.doi: 10.11707/j.1001-7488.LYKX20220545
包广道1,刘婷1,张忠辉1,*,任志彬2,翟畅3,丁铭铭1,姜雪菲4
收稿日期:
2022-08-07
出版日期:
2024-05-25
发布日期:
2024-06-14
通讯作者:
张忠辉
基金资助:
Guangdao Bao1,Ting Liu1,Zhonghui Zhang1,*,Zhibin Ren2,Chang Zhai3,Mingming Ding1,Xuefei Jiang4
Received:
2022-08-07
Online:
2024-05-25
Published:
2024-06-14
Contact:
Zhonghui Zhang
摘要:
目的: 研究快速、准确、宏观获取不同森林类型有效叶面积指数(LAIe)的方法,探讨其空间分布规律,为中小尺度森林LAIe遥感产品的开发提供新思路,为林业精细化监测和森林生态系统碳水循环模拟提供科学可靠的技术手段。方法: 以长白山为研究区,基于Sentinel-2A多光谱影像,运用三维卷积神经网络提取研究区4种针叶林型(长白落叶松、樟子松、红松和红皮云杉)的空间分布;采用区分林型和全样本2种方案,分析样地实测LAIe与7种植被指数(增强植被指数、反红边叶绿素指数、改进简单植被指数、归一化水体指数、归一化植被指数、土壤调节植被指数、简单植被指数)的相关关系;利用各林型对应的最优植被指数,构建区分林型和全样本LAIe与植被指数的回归模型,并基于验证样本数据对比区分林型模型、全样本模型和PROSAIL模型在LAIe反演中的精度表现;结合地理因子分析4种针叶林型LAIe空间格局及变化规律。结果: 所有样本组中7种植被指数与相对的LAIe均存在极显著相关关系(P<0.01),除增强植被指数(EVI)与红松LAIe、简单植被指数(SR)与红皮云杉LAIe外,相关系数均大于0.6,但组间LAIe与不同植被指数相关性具有较大差异;红松、长白落叶松和樟子松LAIe与反红边叶绿素指数(IRECI)相关性最高,红皮云杉、红松LAIe分别与EVI、改进简单植被指数(MSR)相关性最高;4种不同林型模型比全样本模型的R2提高12.7%以上,RMSE降低34.5%;研究区内4种林型LAIe范围在0.37~5.86之间,平均LAIe由高至低依次为红松、长白落叶松、樟子松、红皮云杉。红松对海拔、坡度、坡向的变化最为敏感,红皮云杉、樟子松次之,长白落叶松最小。结论: 不同林型LAIe与遥感植被指数的相关程度存在明显差异,区分林型构建回归模型能够提高LAIe反演精度;区分林型后拟合的线性模型精度整体较PROSAIL模型和全样本模型更高,但LAIe高值区域没有PROSAIL模型表现稳定;4种针叶林型LAIe对地理因子变化的反应差异较大。本研究可为精细区分森林类型的中小尺度针叶林LAIe遥感反演研究提供参考。
中图分类号:
包广道,刘婷,张忠辉,任志彬,翟畅,丁铭铭,姜雪菲. 长白山区4种针叶林有效叶面积指数遥感精细反演及空间分布规律[J]. 林业科学, 2024, 60(5): 127-138.
Guangdao Bao,Ting Liu,Zhonghui Zhang,Zhibin Ren,Chang Zhai,Mingming Ding,Xuefei Jiang. Remote Sensing Inversion of Effective Leaf Area Index of Four Coniferous Forest Types and Their Spatial Distribution Rule in Changbai Mountain[J]. Scientia Silvae Sinicae, 2024, 60(5): 127-138.
表1
采样点LAIe的描述统计"
类型 Type | 样地数量 Plot number | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Standard deviation | 偏度 Skewness | 峰度 Peakness |
长白落叶松Larix olgensis forest | 14 | 1.65 | 3.45 | 2.51 | 0.27 | 1.27 | 2.24 |
樟子松Pinus sylvestris var. mongolica forest | 15 | 1.86 | 3.79 | 2.72 | 0.23 | 2.32 | 7.79 |
红松Pinus koraiensis forest | 15 | 1.06 | 3.24 | 1.95 | 0.24 | 1.32 | 3.19 |
红皮云杉Picea koraiensis forest | 14 | 1.72 | 4.37 | 2.87 | 0.31 | 0.26 | ?0.05 |
全样本Full samples | 58 | 1.06 | 4.37 | 2.43 | 0.38 | 1.62 | 4.75 |
表2
基于Sentinel-2A数据的植被指数构建及说明①"
名称及来源 Name and source | 公式 Formula |
增强植被指数Enhanced vegetation index (EVI) | 2.5× (b8?b4) / (1+ b8 + 6×b4?7.5× b2+1) |
反红边叶绿素指数Inverted red-edge chlorophyll index (IRECI) | (b7 ? b4) × (b6/b5) |
改进简单植被指数Modified simple ratio (MSR) | [(b7/b4) – 1]/[(b7/b4) +1] |
归一化水体指数Normalized difference water index (NDWI) | (b2 - b4) / (b2 + b4) |
归一化植被指数Normalized difference vegetation index(NDVI) | (b8a ? b4) / (b8a + b4) |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | 1.5× (b8a? b4) / (b8a+ b4+0.5) |
简单植被指数Simple ratio (SR) | b8a / b4 |
表3
不同针叶林型遥感分类结果统计①"
类型 Type | 斑块数 Patches number | 面积 Area/hm2 | 平均斑块面积 Average area of patches/hm2 | 制图精度 Mapping accuracy(%) | 用户精度 User accuracy(%) |
长白落叶松Larix olgensis forest | 2 552 | 5 344.85 | 2.09 | 89.5 | 90.2 |
樟子松Pinus sylvestris var. mongolica forest | 148 | 245.58 | 1.66 | 87.6 | 89.4 |
红松Pinus koraiensis forest | 780 | 1 319.52 | 1.69 | 91.2 | 92.7 |
红皮云杉Picea koraiensis forest | 763 | 1 085.61 | 1.42 | 90.4 | 92.3 |
表4
不同林型植被指数与LAIe相关系数①"
植被指数 Vegetation index | 长白落叶松 Larix olgensis forest | 樟子松 Pinus sylvestris var. mongolica forest | 红松 Pinus koraiensis forest | 红皮云杉 Picea koraiensis forest | 全样本 Full sample |
EVI | 0.629** | 0.682** | 0.367* | 0.782** | 0.602** |
IRECI | 0.891** | 0.859** | 0.905** | 0.602** | 0.714** |
MSR | 0.868** | 0.805** | 0.891** | 0.685** | 0.778** |
NDWI | ?0.819** | ?0.763** | ?0.795** | ?0.650** | ?0.685** |
NDVI | 0.844** | 0.805** | 0.816** | 0.708** | 0.723** |
SAVI | 0.767** | 0.784** | 0.641** | 0.628** | 0.631** |
SR | 0.710** | 0.621** | 0.776** | 0.396* | 0.620** |
表5
不同林型LAIe回归参数"
类型 Type | 变量 Variable | 斜率 Slope | 截距 Incept | P | R2 | RMSE | MAE | RPD |
长白落叶松Larix olgensis forest | IRECI | 0.691 | 0.006 | 0.000 | 0.813 | 0.435 | 0.427 | 1.657 |
樟子松Pinus sylvestris var. mongolica forest | IRECI | 0.513 | 0.558 | 0.000 | 0.771 | 0.619 | 0.434 | 1.982 |
红松Pinus koraiensis forest | IRECI | 0.667 | 0.203 | 0.000 | 0.842 | 0.374 | 0.446 | 1.736 |
红皮云杉Picea koraiensis forest | EVI | 1.132 | ?0.439 | 0.000 | 0.693 | 0.891 | 0.605 | 1.608 |
全样本Full samples | MSR | 0.551 | 0.479 | 0.000 | 0.615 | 1.364 | 0.911 | 1.015 |
表6
不同林型LAIe与地理因子间的趋势统计结果①"
类型 Type | 地理因子 Geographical factors | 斜率 Slope | 截距 Incept | P | R2 |
长白落叶松Larix olgensis forest | 海拔 Altitude | ?0.000 4 | 2.191 | 0.019* | 0.001 |
坡度 Slope | 0.010 5 | 1.910 | 0.000** | 0.028 | |
坡向 Aspect | 0.000 1 | 2.030 | 0.302 | 0.001 | |
樟子松Pinus sylvestris var. mongolica forest | 海拔 Altitude | ?0.000 3 | 2.246 | 0.052 | 0.017 |
坡度 Slope | 0.009 1 | 1.745 | 0.004** | 0.036 | |
坡向 Aspect | 0.000 4 | 1.765 | 0.071 | 0.015 | |
红松Pinus koraiensis forest | 海拔 Altitude | ?0.003 5 | 5.845 | 0.000** | 0.241 |
坡度 Slope | 0.042 9 | 1.701 | 0.000** | 0.218 | |
坡向 Aspect | ?0.000 7 | 2.401 | 0.083 | 0.007 | |
红皮云杉Picea koraiensis forest | 海拔 Altitude | ?0.002 2 | 4.306 | 0.000** | 0.043 |
坡度 Slope | ?0.006 4 | 1.816 | 0.354 | 0.003 | |
坡向 Aspect | 0.000 3 | 1.731 | 0.233 | 0.004 |
段利民, 李 玮, 罗艳云, 等. 锡林河流域植被叶面积指数时空变化特征及其对地形因子的响应. 水土保持研究, 2019, 26 (3): 224- 231. | |
Duan L M, Li W, Luo Y Y, et al. Spatiotemporal variation of vegetation leaf area index and its response to topographical factors in Xilin River Basin. Research on Soil and Water Conservation, 2019, 26 (3): 224- 231. | |
范闻捷, 盖颖颖, 徐希孺, 等. 遥感反演离散植被有效叶面积指数的空间尺度效应. 中国科学:地球科学, 2013, 43 (2): 280- 286. | |
Fan W J, Gai Y Y, Xu X R, et al. The spatial scaling effect of the discrete-canopy effective leaf area index retrieved by remote sensing. Scientia Sinica(Terrae), 2013, 43 (2): 280- 286. | |
方红亮. 我国叶面积指数卫星遥感产品生产及验证. 遥感技术与应用, 2020, 35 (5): 990- 1003. | |
Fang H L. Development and validation of satellite leaf area index (LAI) products in China. Remote Sensing Technology and Application, 2020, 35 (5): 990- 1003. | |
方红亮. 真实和有效叶面积指数及聚集指数的尺度效应. 地球信息科学学报, 2021, 23 (7): 1155- 1168. | |
Fang H L. Scaling effects of the true and effective leaf area index (LAI and LAIe) and clumping index(CI). Journal of Geo-Information Science, 2021, 23 (7): 1155- 1168. | |
李贺平, 肖 克, 范文义, 等. 大兴安岭地区森林叶面积指数测定与遥感估算. 东北林业大学学报, 2013, 41 (5): 66- 70.
doi: 10.3969/j.issn.1000-5382.2013.05.015 |
|
Li H P, Xiao K, Fan W Y, et al. Determination and estimation of the forest leaf area index with remote sensing in Daxing' an mountain. Journal of Northeast Forestry University, 2013, 41 (5): 66- 70.
doi: 10.3969/j.issn.1000-5382.2013.05.015 |
|
李鑫川, 徐金梦, 朱玲玉, 等. 2000—2016 年淮河流域叶面积指数时空变化特征. 水土保持, 2019, 7 (4): 71- 79.
doi: 10.12677/OJSWC.2019.74010 |
|
Li X C, Xu J M, Zhu L Y, et al. Spatial and temporal variationa of LAI in Huaihe River Basin during 2000—2016. Open Journal of Soil and Water Conservation, 2019, 7 (4): 71- 79.
doi: 10.12677/OJSWC.2019.74010 |
|
李竺强, 朱瑞飞, 马经宇, 等. 联合连续学习的残差网络遥感影像机场目标检测方法. 光学学报, 2020, 40 (16): 173- 185. | |
Li Z Q, Zhu R F, Ma J Y, et al. Airport detection method combined with continuous learning of residual-based network on remote sensing image. Acta Optica Sinica, 2020, 40 (16): 173- 185. | |
林 杰, 张金池, 顾哲衍, 等. 基于叶面积指数的植被覆盖管理措施因子C的遥感定量估算. 林业科学, 2013, 49 (2): 86- 92. | |
Lin J, Zhang J C, Gu Z Y, et al. Quantitative assessment of vegetation cover and management factor based on leaf area index and remote sensing. Scientia Silvae Sinicae, 2013, 49 (2): 86- 92. | |
刘婧怡, 汤旭光, 常守志, 等. 森林叶面积指数遥感反演模型构建及区域估算. 遥感技术与应用, 2014, 29 (1): 18- 25. | |
Liu J Y, Tang X G, Chang S Z, et al. Application of remote sensing to inverse the forest leaf area index and regional estimation. Remote Sensing Technology and Application, 2014, 29 (1): 18- 25. | |
刘 洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望. 地球信息科学学报, 2013, 15 (5): 734- 743.
doi: 10.3724/SP.J.1047.2013.00734 |
|
Liu Y, Liu R G, Chen J M, et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data. Journal of Geo-Information Science, 2013, 15 (5): 734- 743.
doi: 10.3724/SP.J.1047.2013.00734 |
|
任 哲, 陈怀亮, 王连喜, 等. 利用交叉验证的小麦LAI反演模型研究. 国土资源遥感, 2015, 27 (4): 34- 40. | |
Ren Z, Chen H L, Wang L X, et al. Research on inversion model of wheat LAI using cross-validation. Remote Sensing for Land & Resources, 2015, 27 (4): 34- 40. | |
王修信, 孙 涛, 朱启疆, 等. 林地叶面积指数遥感估算方法适用分析. 生态学报, 2014, 34 (16): 4612- 4619. | |
Wang X X, Sun T, Zhu Q J, et al. Assessment of different methods for estimating forest leaf area index from remote sensing data. Acta Ecologica Sinica, 2014, 34 (16): 4612- 4619. | |
颜 伟, 周 雯, 易利龙, 等. 森林类型遥感分类及变化监测研究进展. 遥感技术与应用, 2019, 34 (3): 445- 454. | |
Yan W, Zhou W, Yi L L, et al. Research progress of remote sensing classification and change monitoring on forest types. Remote Sensing Technology and Application, 2019, 34 (3): 445- 454. | |
杨丰玮, 崔秀萍, 赵冰洁, 等. 基于Pearson相关系数的西部城市群土地演变与社会经济发展研究. 自然资源情报, 2022, (12): 22- 29. | |
Yang F W, Cui X P, Zhao B J, et al. Study on land evolution and social-economic development in western urban agglomeration based on Pearson correlation coeffi cient. Natural Resources Information, 2022, (12): 22- 29. | |
姚 雄, 余坤勇, 刘 健. 基于无人机多光谱遥感的马尾松林叶面积指数估测. 农业机械学报, 2021, 52 (7): 213- 221. | |
Yao X, Yu K Y, Liu J. Leaf area index estimation of Masson pine(Pinus massoniana)forests based on multispectral remote sensing of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (7): 213- 221. | |
姚 雄, 余坤勇, 杨玉洁, 等. 基于随机森林模型的林地叶面积指数遥感估算. 农业机械学报, 2017, 48 (5): 159- 166. | |
Yao X, Yu K Y, Yang Y J, et al. Estimation of forest leaf area index based on random forest model and remote sensing data. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (5): 159- 166. | |
叶 舒, 范文义, 孟庆岩. 基于高分一号数据的PROSAIL模型叶面积指数反演. 森林工程, 2016, 32 (4): 18- 21. | |
Ye S, Fan W Y, Meng Q Y. Leaf area index retrieval of GF-1 using PROSAIL. Forest Engineering, 2016, 32 (4): 18- 21. | |
周靖靖, 赵 忠, 刘金良, 等. 不同方法提取的快鸟影像信息估算刺槐林有效叶面积指数的精度比较. 林业科学, 2015, 51 (9): 24- 34. | |
Zhou J J, Zhao Z, Liu J L, et al. A comparison of different Quickbird image information for estimating the effective leaf area index of Robinia pseudoacacia plantations. Scientia Silvae Sinicae, 2015, 51 (9): 24- 34. | |
朱高龙. 基于LAI-2200的草地LAI测量与聚集度系数分析. 农业机械学报, 2016, 47 (5): 307- 314.
doi: 10.6041/j.issn.1000-1298.2016.05.042 |
|
Zhu G L. Validation of grassland leaf area index and clumping index retrievals from LAI-2200. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (5): 307- 314.
doi: 10.6041/j.issn.1000-1298.2016.05.042 |
|
朱瑞飞, 马经宇, 李竺强, 等. 多层感知卷积神经网络的国产多光谱影像分类. 光学学报, 2020, 40 (15): 1528003.
doi: 10.3788/AOS202040.1528003 |
|
Zhu R F, Ma J Y, Li Z Q, et al. Domestic multispectral image classification based on multilayer perception convolutional neural network. Acta Optica Sinica, 2020, 40 (15): 1528003.
doi: 10.3788/AOS202040.1528003 |
|
Bhattarai R, Rahimzadeh-Bajgiran P, Weiskittel A, et al. Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sensing Letters, 2020, 11 (8): 777- 786.
doi: 10.1080/2150704X.2020.1767824 |
|
Chen J M, Black T A. 1992. Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15(4): 421-429. | |
Chen J M, Leblanc S G. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35 (5): 1316- 1337.
doi: 10.1109/36.628798 |
|
Chrysafis I, Korakis G, Kyriazopoulos A P, et al. Retrieval of leaf area index using sentinel-2 imagery in a mixed Mediterranean forest area. ISPRS International Journal of Geo-Information, 2020, 9 (11): 622.
doi: 10.3390/ijgi9110622 |
|
Cohrs C W, Cook R L, Gray J M, et al. Sentinel-2 leaf area index estimation for pine plantations in the southeastern United States. Remote Sensing, 2020, 12 (9): 1406.
doi: 10.3390/rs12091406 |
|
Fang H L, Baret F, Plummer S, et al. An overview of global leaf area index (LAI): methods, products, validation, and applications. Reviews of Geophysics, 2019, 57 (3): 739- 799.
doi: 10.1029/2018RG000608 |
|
Johnson R A, Wichern D W. 2001. Practical multivariate statistical analysis. 4th ed. Beijing: Tsinghua University Press. | |
Kaushik P, Pati P K, Khan M L, et al. A quick and simple method for estimating leaf area by leaf weight. International Journal of Botany Studies, 2021, 6, 1286- 1288. | |
Kganyago M, Mhangara P, Alexandridis T, et al. Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape. Remote Sensing Letters, 2020, 11 (10): 883- 892.
doi: 10.1080/2150704X.2020.1767823 |
|
Knyazikhin Y, Martonchik J V, Myneni R B, et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research:Atmospheres, 1998, 103 (D24): 32257- 32275.
doi: 10.1029/98JD02462 |
|
Liu Z, Jiang F, Zhu Y, et al. Spatial heterogeneity of leaf area index in a temperate old-growth forest: spatial autocorrelation dominates over biotic and abiotic factors. Science of the Total Environment, 2018, 634, 287- 295.
doi: 10.1016/j.scitotenv.2018.03.333 |
|
Lunagaria M M, Patel H R. Evaluation of PROSAIL inversion for retrieval of chlorophyll, leaf dry matter, leaf angle, and leaf area index of wheat using spectrodirectional measurements. International Journal of Remote Sensing, 2019, 40 (21): 8125- 8145.
doi: 10.1080/01431161.2018.1524608 |
|
Myneni R B, Hall F G, Sellers P J, et al. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33 (2): 481- 486.
doi: 10.1109/TGRS.1995.8746029 |
|
Pasquarella V J, Elkinton J S, Bradley B A. Extensive Gypsy moth defoliation in southern New England characterized using Landsat satellite observations. Biological Invasions, 2018, 20 (11): 3047- 3053.
doi: 10.1007/s10530-018-1778-0 |
|
Saito K, Ogawa S, Aihara M, et al. 2001. Estimates of LAI for forest management in Okutama. Proceeding of 22nd Asian Conference on Remote Sensing, 600−605. | |
Sinha S K, Padalia H, Dasgupta A, et al. Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: case study of tropical deciduous forest plantation, North India. International Journal of Applied Earth Observation and Geoinformation, 2020, 86, 102027.
doi: 10.1016/j.jag.2019.102027 |
|
Tucker C J 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150. | |
Wan L, Zhang J, Dong X, et al. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model. Computers and Electronics in Agriculture, 2021, 187, 106304.
doi: 10.1016/j.compag.2021.106304 |
|
Yu Y H, Wang J L, Liu G J, et al. Forest leaf area index inversion based on Landsat OLI data in the shangri-La city. Journal of the Indian Society of Remote Sensing, 2019, 47 (6): 967- 976.
doi: 10.1007/s12524-019-00950-6 |
[1] | 杨雪峰, 木尼热·买买提. 基于多角度卫星遥感的胡杨林结构参数获取[J]. 林业科学, 2023, 59(9): 34-44. |
[2] | 马婷,李崇贵,汤伏全,吕杰. 基于多分类器集成的落叶松人工林提取[J]. 林业科学, 2021, 57(11): 105-118. |
[3] | 郭颖,李增元,陈尔学,张旭,赵磊,陈艳,王雅慧. 一种改进的高空间分辨率遥感影像森林类型深度学习精细分类方法:双支FCN-8s[J]. 林业科学, 2020, 56(3): 48-60. |
[4] | 吴项乾,曹林,申鑫,汪贵斌,曹福亮. 基于无人机激光雷达的银杏人工林有效叶面积指数估测[J]. 林业科学, 2020, 56(1): 74-86. |
[5] | 田静, 邢艳秋, 姚松涛, 曾旭婧, 焦义涛. 基于元胞自动机和BP神经网络算法的Landsat-TM遥感影像森林类型分类比较[J]. 林业科学, 2017, 53(2): 26-34. |
[6] | 祖笑锋, 覃先林, 李增元, 孙桂芬, 刘树超. 基于幂律分布的森林燃烧生物量卫星遥感估测方法[J]. 林业科学, 2017, 53(10): 90-99. |
[7] | 周靖靖, 赵忠, 刘金良, 赵君, 赵青侠, 刘俊. 不同方法提取的快鸟影像信息估算刺槐林有效叶面积指数的精度比较[J]. 林业科学, 2015, 51(9): 24-34. |
[8] | 刘志理, 戚玉娇, 金光泽. 小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局[J]. 林业科学, 2013, 49(8): 58-64. |
[9] | 王艳英;王成;郄光发;董建华;蒋继宏. 4个针叶树种枝叶气味对小白鼠自发行为影响的比较分析[J]. , 2013, 49(5): 188-193. |
[10] | 彭舜磊;王得祥. 秦岭主要森林类型近自然度评价[J]. 林业科学, 2011, 47(1): 135-142. |
[11] | 董希斌 姜帆. 帽儿山不同森林类型生物多样性恢复效果分析[J]. 林业科学, 2008, 44(12): 77-82. |
[12] | 许克福 吴泽民 管露露. 马鞍山市不同城市森林类型树种组成及多样性[J]. 林业科学, 2008, 44(10): 142-147. |
[13] | 王原 吴泽民 张磊 赵霞 管露露. 马鞍山城市森林景观镶嵌与其城郊分布梯度格局研究[J]. 林业科学, 2007, 43(3): 51-58. |
[14] | 陈尔学 李增元 谭炳香 梁毓照 张则路. 高光谱数据森林类型统计模式识别方法比较评价[J]. 林业科学, 2007, 43(1): 84-89. |
[15] | 汤孟平 唐守正 洪玲霞 雷相东 张会儒. 森林类型多样性最大覆盖模型与一种可行算法[J]. 林业科学, 2003, 39(3): 70-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||