林业科学 ›› 2023, Vol. 59 ›› Issue (10): 1-8.doi: 10.11707/j.1001-7488.LYKX20220875
司莉青1(),王明玉1,*,陈锋2,舒立福1,赵凤君1,李伟克1
收稿日期:
2022-12-08
接受日期:
2023-10-25
出版日期:
2023-10-25
发布日期:
2023-11-01
通讯作者:
王明玉
E-mail:836993572@qq.com
基金资助:
Liqing Si1(),Mingyu Wang1,*,Feng Chen2,Lifu Shu1,Fengjun Zhao1,Weike Li1
Received:
2022-12-08
Accepted:
2023-10-25
Online:
2023-10-25
Published:
2023-11-01
Contact:
Mingyu Wang
E-mail:836993572@qq.com
摘要:
闪电引发的野火造成了全球范围内生态、财产和生命的重大损失。随着气候变暖以及厄尔尼诺等现象的出现,全球雷暴和闪电活动显著增加,由其引发的雷击火造成的燃烧面积也显著增加。然而,目前对闪电点火过程和机制的研究还存在很大空白。本文对雷电分布特征、影响雷电密度的因素以及我国雷暴日的规律进行总结归纳,并将其与雷击火的发生和预测相关联,探究闪电规律与雷击火发生之间的关系。闪电的发生,在时间上具有随机性和瞬时性的特点,闪电发生地域不同,其特征也不相同,闪电密度东部比西部高,南部比北部高,陆地比海洋高。森林雷击火是由地闪电流的热效应所导致,引燃与否与闪电的极性、电流强度等特征密切相关。闪电密度还受到海拔、植被分布、土壤类型、地形以及火烧迹地等因素的影响,海拔升高引起强制对流,雷击,林地、灌木和草原由于地表加热程度不同导致雷击密度也不同,而大型火烧迹地通过增强自由对流或中尺度环流引发雷击。受人类活动强烈影响的地区(如城市、采矿区和工业区)的闪电活动更多。从土壤类型来看,冲积土、过渡性红砂土和淋溶土与闪电活动的增加有关。森林大火产生的火积云也可能会引发又一场火灾。我国东经105°以东地区的平均雷暴持续时期随纬度减小而递增。闪电引起雷击火的过程包括放电加热阶段、热反馈阶段和自燃火焰阶段3个阶段,且气候变化会影响闪电的发生和点火概率。在未来,闪电发生次数和着火概率的增加很大程度上会导致空间和时间上火灾风险的增加。目前,闪电预测雷击火模型中往往没有严格评估闪电的发生情况,未来有必要开发一种用于检测闪电长期趋势的系统,通过卫星通信、无人机航拍、利用现有的大气电场测量系统,同时结合人工引雷、野外点火等试验手段,建立雷击火智能化预报模型,以提高我国雷击火发生概率预报的准确度,实现对雷击火的有效防控。
中图分类号:
司莉青,王明玉,陈锋,舒立福,赵凤君,李伟克. 雷电分布特征与雷击森林火预警[J]. 林业科学, 2023, 59(10): 1-8.
Liqing Si,Mingyu Wang,Feng Chen,Lifu Shu,Fengjun Zhao,Weike Li. Distribution Characteristics of Lightning and the Warning of Lightning-Caused Forest Fires[J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8.
杜春英, 李 帅, 刘 丹, 等. 大兴安岭地区森林雷击火发生的时空分布. 自然灾害学报, 2010, 19 (3): 72- 76.
doi: 10.13577/j.jnd.2010.0312 |
|
Du C Y, Li S, Liu D, et al. Spatiotemporal distribution of lightning-caused forest fires in Daxinganling area. Journal of Natural Disasters, 2010, 19 (3): 72- 76.
doi: 10.13577/j.jnd.2010.0312 |
|
冯俊伟, 沈 浩, 梁 栋. 森林雷击火发生规律研究. 中山大学学报(自然科学版), 2021, 60 (3): 131- 137. | |
Feng J W, Shen H, Liang D. Study on the occurrence law of forest lightning-caused fire. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60 (3): 131- 137. | |
何金良, 曾 嵘. 2013. 配电线路雷电防护. 北京: 清华大学出版社. | |
He J L, Zeng R. 2013. Lightning protection of power distribution lines. Beijing: Tsinghua University Publishing House Co. , Ltd.[in Chinese] | |
胡亚男, 陶世银, 龚梅竹, 等. 基于遥感影像的地闪空间分布特征研究. 气象与环境科学, 2022, 45 (5): 87- 94.
doi: 10.16765/j.cnki.1673-7148.2022.05.012 |
|
Hu Y N, Tao S Y, Gong M Z, et al. Distribution characteristics of cloud-to-ground lightning based on remotely sensed lmages. Meteorological and Environmental Sciences, 2022, 45 (5): 87- 94.
doi: 10.16765/j.cnki.1673-7148.2022.05.012 |
|
李伟克, 舒立福, 苑尚博, 等. 2022.基于VLF/LF三维闪电定位系统的大兴安岭闪电时空分布特征. 林业科学, 58(11): 21–30. | |
Li W K, Shu L F, Yuan S B, et al. 2022. Temporal and spatial distribution characteristics of lightning in Daxing'anling mountains based on VLF/LF 3D lightning in Daxing'anling mountains based on VLF/LF 3D lightning location system. Scientia Silvae Sinicae, 58(11): 21–30. [in Chinese] | |
黄礼忠. 2018. 基于LLS的雷电时空分布及雷暴临近预测研究. 长沙: 长沙理工大学. | |
Huang L Z. 2018. Spatial and temporal distribution of lightning and prediction of thunderstorm based on LLS. Changsha: Changsha University of Science & Technology.[in Chinese] | |
穆亚利, 袁 萍, 王雪娟, 等. 利用近红外波段光谱研究闪电回击通道温度的演化特性. 光学学报, 2016, 36 (6): 311- 317. | |
Mu Y L, Yuan P, Wang X J, et al. Study on evolution of lightning return stroke channel temperature by near-infrared spectroscopy. Acta Optica Sinica, 2016, 36 (6): 311- 317. | |
舒立福, 王明玉, 田晓瑞, 等. 我国大兴安岭呼中林区雷击火发生火环境研究. 林业科学, 2003, 39 (6): 94- 99. | |
Shu L F, Wang M Y, Tian X R, et al. The fire environment mechanism of lightning-caused fire formed for Daxing’an Mountains. Scientia Silvae Sinicae, 2003, 39 (6): 94- 99. | |
田晓瑞, 舒立福, 赵凤君, 等. 大兴安岭雷击火发生条件分析. 林业科学, 2012, 48 (7): 98- 103. | |
Tian X R, Shu L F, Zhao F J, et al. Analysis of the conditions for lightning-caused fire occurrence in Daxing’anling Region. Scientia Silvae Sinicae, 2012, 48 (7): 98- 103. | |
王金荣, 史明昌, 姜恩来, 等. 基于GIS的黑龙江大兴安岭森林雷击火发生概率预测模型. 安徽农业大学学报, 2015, 42 (5): 769- 774. | |
Wang J R, Shi M C, Jiang E L, et al. A GIS-based lightning-caused fire probability prediction model in Daxing’an Mountains of Heilongjiang Province. Journal of Anhui Agricultural University, 2015, 42 (5): 769- 774. | |
王学良, 余田野, 汪姿荷, 等. 1961—2013年中国雷暴气候特征及东亚夏季风影响研究. 暴雨灾害, 2016, 35 (5): 471- 481. | |
Wang X L, Yu T Y, Wang Z H, et al. Analysis on climate characteristics of thunderstorm in China and effect of East Asian summer monsoon on it during 1961−2013. Torrential Rain and Disasters, 2016, 35 (5): 471- 481. | |
王志增. (2022−06−16) [2022−07−28]. 国家林草局专函表扬雷击火防控应急科技攻关团队. http://www.ifeep.cn/info/1100/3175.htm. | |
Wang Z Z. (2022−06−16) [2022−07−28]. The National Forestry and Grass Administration praised the lightning-caused fire prevention and control emergency science and technology team in a special letter. http://www.ifeep.cn/info/1100/3175.htm. | |
肖志远, 姜恩来, 刘 毅. 北美雷击火概率预测技术及其应用效果评价. 林业机械与木工设备, 2011, 39 (9): 21- 25. | |
Xiao Z Y, Jiang E L, Liu Y. Lightning-caused fire probability prediction technology in north America and assessment of its application effect. Forestry Machinery & Woodworking Equipment, 2011, 39 (9): 21- 25. | |
于淑洁, 黄晓东. 2010. 大兴安岭雷暴日数的时空分布特征. 气象水文海洋仪器, 27(1): 72-74. | |
Yu S J, Huang X D. 2010. Temproal and spatial distribution of thunderstorm days in Daxinganling. Meteorological, Hydrological and Marine Instruments, 27(1): 72–74.[in Chinese] | |
臧桐汝, 舒立福, 王明玉, 等. 黑龙江大兴安岭林区雷击火时空分布及驱动因素分析. 西北农林科技大学学报(自然科学版), 2022, 50 (12): 64- 76. | |
Zang T R, Shu L F, Wang M Y, et al. Analysis of spatial and temporal distribution and driving factors of lightning-caused fires in Daxing’anling forest region of Heillongjiang. Journal of Northwest A & F University(Natural Science Edition), 2022, 50 (12): 64- 76. | |
张宏民, 乔艺骞, 唐珑坪, 等. 模拟雷击明火点燃松针燃料的实验研究. 工程热物理学报, 2022, 43 (3): 840- 845. | |
Zhang H M, Qiao Y Q, Tang L P, et al. Experimental study on sustainable flaming ignition of dead pine needles by simulated lightning discharge. Journal of Engineering Thermophysics, 2022, 43 (3): 840- 845. | |
Abatzoglou J T, Kolden C A, Balch J K, et al. Controls on interannual variability in lightning caused fire activity in the western US. Environmental Research Letters, 2016, 11 (4): 045005.
doi: 10.1088/1748-9326/11/4/045005 |
|
Abdollahi M, Dewan A, Hassan Q K. Applicability of remote sensing-based vegetation water content in modeling lightning caused forest fire occurrences. MDPI International Journal of Geo-information, 2019, 8 (3): 143. | |
Anderson K, Martell D L, Flannigan M D, et al. 2000. Modeling of fire occurrence in the boreal forest region of Canada//Kasischke E, Stocks B J. Fire, climate change, and carbon cycling in the boreal forest. Springer-Verlag, New York, USA: 357−367. | |
Aranguren D, Lopez J, Inampues J, et al. Cloud-to-ground lightning activity in Colombia and the influence of topography. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 154, 182- 189.
doi: 10.1016/j.jastp.2016.08.010 |
|
Bajocco S, Koutsias N, Ricotta C. Linking fire ignitions hotspots and fuel phenology: the importance of being seasonal. Ecological Indicators, 2017, 82, 433- 440.
doi: 10.1016/j.ecolind.2017.07.027 |
|
Balch J K, Bradley B A, Abatzoglou J T, et al. 2017. Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences, USA 114(11): 2946−2951. | |
Baranovskiy N. Deterministic-probabilistic approach to predict lightning-caused forest fires in mounting areas. Forecasting, 2021, 3 (4): 695- 715.
doi: 10.3390/forecast3040043 |
|
Bourscheidt V, Pinto O, Naccarato K P, et al. 2009. The influence of topography on the cloud-to-ground lightning density in South Brazil. Atmospheric Research, 91(2−4): 508−513. | |
Bowman D M J S, Bliss A, Bowman C J W, et al. 2019. Fire caused demographic attrition of the Tasmanian palaeoendemic conifer Athrotaxis cupressoides. Austral Ecology, 44(8):1332−1339. | |
Brooks C E P. The distribution of thunderstorms over the globe. Geophysical Memoirs, 1925, 3 (24): 147- 164. | |
Chan H G, Mohamed A I B. Investigation on the occurrence of positive cloud-to-ground (+CG) lightning in UMP Pekan. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179, 206- 213.
doi: 10.1016/j.jastp.2018.07.016 |
|
Chang Y, Zhu Z, Bu R, et al. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 2013, 28 (10): 1989- 2004.
doi: 10.1007/s10980-013-9935-4 |
|
Dissing D, Verbyla D L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Canadian Journal of Forest Research, 2003, 33, 770- 782.
doi: 10.1139/x02-214 |
|
Dowdy A J. 2015. Large-scale modelling of environments favourable for dry lightning occurrence. 21st International Congress on Modelling and Simulation, 21. | |
Duff T J, Keane R E, Penman T D, et al. Revisiting wildland fire fuel quantification methods: the challenge of understanding a dynamic, biotic entity. Forests, 2017, 8 (9): 351.
doi: 10.3390/f8090351 |
|
Feng J W, Shen H, Liang D. Investigation of lightning ignition characteristics based on an impulse current generator. Ecology and Evolution, 2019, 9 (24): 245- 258. | |
Fernandes P, Guiomar N, Davim D A. Modelling the behavior and extent of mid-holocene lightning-caused fires in Portugal. Environmental Science-processes & Impacts, 2022, 17, 89. | |
Finney D, Doherty R, Wild O, et al. A projected decrease in lightning under climate change. Nature Climate Change, 2018, 8, 210- 213.
doi: 10.1038/s41558-018-0072-6 |
|
Fisher J, Hoole P R P, Pirapaharan K, et al. 2014. Cloud to ground and ground to cloud flashes in lightning protection: and future severe lightning and climate change. International Conference on Lightning Protection (ICLP), Shanghai, 440–445. | |
Flannigan M D, Wotton B M. Lightning-ignited forest fires in northwestern Ontario. Canadian Journal of Forest Research, 1991, 21 (3): 277- 287.
doi: 10.1139/x91-035 |
|
Fuquay D M. Characteristics of seven lightning discharges that caused forest fires. Journal of Geophysical Research, 1967, 72 (24): 6371- 6373.
doi: 10.1029/JZ072i024p06371 |
|
Fuquay D M, Taylor A R, Hawe R G, et al. Lightning discharges that caused forest fires. Journal of Geophysical Research, 1972, 77 (12): 2156- 2158.
doi: 10.1029/JC077i012p02156 |
|
Golde R H. The frequency of occurrence and the distribution of lightning flashes to transmission lines. Transaction of the American Institute of Electrical Engineers, 1945, 64, 902- 910.
doi: 10.1109/T-AIEE.1945.5059060 |
|
Hall B L, Brown T J. 2006. Climatology of positive polarity flashes and multiplicity and their relation to natural wildfire ignitions. The 19th International Lightning Detection Conference−1st International Lightning Meteorology Conference. Arizona, USA. | |
Hanberry B. Compositional changes in selected forest ecosystems of the western United States. Applied Geography, 2014, 52, 90- 98.
doi: 10.1016/j.apgeog.2014.05.004 |
|
Hantson S, Arneth A, Harrison S P, et al. 2016. The status and challenge of global fire modelling. Biogeosciences 13: 3359−3375. | |
Hu T Y, Zhou G S. Drivers of lightning- and human-caused fire regimes in the Great Xing’an Mountains. Forest Ecology and Management, 2014, 329, 49- 58.
doi: 10.1016/j.foreco.2014.05.047 |
|
Kilinc M, Beringer J. The spatial and temporal distribution of lightning strikes and their relationship with vegetation type, elevation, and fire scars in the northern territory. Journal of Climate Change, 2007, 20 (7): 1161- 1173. | |
Kourtz P H, Todd J B. 1992. Predicting the daily occurrence of lightning-caused forest fires. Canadian Forest Service Petawawa National Forestry Institute, Information Report PI-X-103, Chalk River, Ontario, 16. | |
Krause A, Kloster S, Wilkenskjeld S, et al. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. Journal of Geophysical Research, 2014, 119 (3): 312- 322.
doi: 10.1002/2013JG002502 |
|
Kuleshov Y, Hettrick P, Mackerras D, et al. Occurrence of positive and negative polarity cloud-to-ground lightning flashes: case study of CGR4 and GPATS data for Brisbane, Australia. Australian Meteorological and Oceanographic Journal, 2011, 61 (2): 107- 112.
doi: 10.22499/2.6102.002 |
|
Latham D J, Schlieter J A. 1989. Ignition probabilities of wildland fuels based on simulated lightning discharges. US Department of Agriculture, Forest Service, Intermountain Research Station. | |
Latham D, Williams E. 2001. Lightning and forest fires//Johnson E A, Miyanishi K. Forest fires. Academic Press, San Diego, 375−418. | |
Littell J, McKenzie D, Peterson D, et al. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications, 2009, 19, 1003- 1021.
doi: 10.1890/07-1183.1 |
|
Liu Y, Goodrick S, Stanturf J. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. Forest Ecology and Management, 2013, 294, 120- 135.
doi: 10.1016/j.foreco.2012.06.049 |
|
Liu Z H, Yang J, Chang Y, et al. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 2012, 18 (6): 2041- 2056.
doi: 10.1111/j.1365-2486.2012.02649.x |
|
Lutz J A, van Wagtendonk J W, Thode A E, et al. Climate, lightning ignitions, and fire severity in Yosemite national park, California, USA. International Journal of Wildland Fire, 2009, 18 (7): 765- 774.
doi: 10.1071/WF08117 |
|
Moris J V, Conedera M, Nisi L, et al. Lightning-caused fires in the Alps: Identifying the igniting strokes. Agricultural and Forest Meteorology, 2020, 290, 107990.
doi: 10.1016/j.agrformet.2020.107990 |
|
Muller M M, Vacik H. Characteristics of lightnings igniting forest fires in Austria. Agricultural and Forest Meteorology, 2017, 240-241, 26- 34.
doi: 10.1016/j.agrformet.2017.03.020 |
|
Nampak H, Love P, Fox-Hughes P, et al. Characterizing spatial and temporal variability of lightning activity associated with wildfire over Tasmania, Australia. Fire, 2021, 4 (1): 10.
doi: 10.3390/fire4010010 |
|
Nieto H, Aguado I, Garcia M, et al. 2012. Lightning-caused fires in Central Spain: development of a probability model of occurrence for two Spanish regions. Agricultural and Forest Meteorology, 162–163: 35–43. | |
Ozaki M, Harris R M B, Love P T, et al. Impact of vertical atmospheric structure on an atypical fire in a mountain valley. Fire, 2022, 5, 104.
doi: 10.3390/fire5040104 |
|
Papavasileiou G, Giannaros T M. The catastrophic 2021 wildfires in Greece: an outbreak of pyroconvective events. Environmental Science-Processes & Impacts, 2022, 17 (1): 7. | |
Petrie M D, Savage N P, Stephen H. High and low air temperatures and natural wildfire ignitions in the Sierra Nevada Region. Environments, 2022, 9, 96.
doi: 10.3390/environments9080096 |
|
Pfeiffer M, Spessa A, Kaplan J O. 2013. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 6(3): 643−685. | |
Pineda N, Montanyà J, Velde O A V D. 2014. Characteristics of lightning related to wildfire ignitions in Catalonia. Atmospheric Research, 135(1): 380−387. | |
Pineda N, Rigo T. The rainfall factor in lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology, 2017, 239, 249- 263.
doi: 10.1016/j.agrformet.2017.03.016 |
|
Podolskaya A S, Ershov D V, Shulyak P P. 2011. Application of the method for assessing the likelihood of forest fires in ISDMRosleskhoz. Modern Problem Remote Sensing Earth Space, 8: 118–126. (In Russian) | |
Podschwit H, Cullen A. Patterns and trends in simultaneous wildfire activity in the United States from 1984 to 2015. International Journal of Wildland Fire, 2020, 29 (12): 1057- 1071.
doi: 10.1071/WF19150 |
|
Podur J, Martell D L, Csillag F. 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecological Modelling, 164(1): 1–20. | |
Price C, Rind D. Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research-Atmospheres, 1994, 99 (D5): 10823- 10831.
doi: 10.1029/94JD00019 |
|
Proestakis E, Kazadzis S, Lagouvardos K, et al. Aerosols and lightning activity: The effect of vertical profile and aerosol type. Atmospheric Research, 2016, 182, 243- 255.
doi: 10.1016/j.atmosres.2016.07.031 |
|
Read N, Duff T J, Taylor P G. A lightning-caused wildfire ignition forecasting model for operational use. Agricultural and Forest Meteorology, 2018, 253−254, 233- 246.
doi: 10.1016/j.agrformet.2018.01.037 |
|
Romps D, Seeley J, Vollaro D, et al. Projected increase in lightning strikes in the United States due to global warming. Science, 2014, 346 (6211): 851- 854.
doi: 10.1126/science.1259100 |
|
Saha U, Siingh D, Midya S K, et al. Spatio-temporal variability of lightning and convective activity over South/ South-East Asia with an emphasis during El Niño and La Niña. Atmospheric Research, 2017, 197 (nov.): 150- 166. | |
Schulz W, Cummins K L, Diendorfer G, et al. Cloud-to-ground lightning in Austria: a 10-year study using data from a lightning location system. Journal of Geophysical Research, 2005, 110 (D09): 101. | |
Short K. 2017. spatial wildfire occurrence data for the United States, 1992–2015 [FPA_FOD_20170508], 4th ed. Forest Service Research Data Archive, United States Department of Agriculture. Fort Collins, CO, USA. | |
Shu Y, Shi C M, Yi B L, et al. Influence of climatic factors on lightning fires in the primeval forest region of the Northern Daxing’an Mountains, China. Sustainability, 2022, 14 (9): 5462.
doi: 10.3390/su14095462 |
|
Sisniega D P, García M M, Menéndez S F, et al. Evidence for the influence of land uses and soil types on cloud-to-ground lightning activity in Asturias (Spain). Atmospheric Research, 2018, 203 (May): 62- 67. | |
Stephenson C. 2010. The impacts, losses and benefits sustained from five severe bushfires in southeastern Australia. Melbourne: DSE Fire Research & Adaptive Management Publications Report # 88. | |
Tippett M K, Allen J T, Gensini V A, et al. Climate and hazardous convective weather. Current Climate Change Reports, 2015, 1 (2): 60- 73.
doi: 10.1007/s40641-015-0006-6 |
|
Vanúcia A, Alberto S, Marcelo M F S, et al. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agricultural and Forest Meteorology, 2022, 312, 108723.
doi: 10.1016/j.agrformet.2021.108723 |
|
Vecín-Arias D, Castedo-Dorado F, Ordóñez C, et al. Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula. Agricultural and Forest Meteorology, 2016, 225, 36- 47.
doi: 10.1016/j.agrformet.2016.05.003 |
|
Veraverbeke S, Rogers B M, Goulden M L, et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7 (7): 529- 534.
doi: 10.1038/nclimate3329 |
|
Wang X, Wotton B M, Cantin A S, et al. cffdrs: An R package for the canadian forest fire danger rating system. Ecological Processes, 2017, 6, 5.
doi: 10.1186/s13717-017-0070-z |
|
Wapler K. High-resolution climatology of lightning characteristics within Central Europe. Meteorology and Atmospheric Physics, 2013, 122 (3-4): 175- 184.
doi: 10.1007/s00703-013-0285-1 |
|
Wei X K, Wang G J, Chen T X, et al. A spatio-temporal analysis of active fires over China during 2003–2016. Remote Sensing, 2020, 12 (11): 1787.
doi: 10.3390/rs12111787 |
|
Westerling A. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philosophical Transactions−Royal Society Biological Sciences, 2016, 371 (1696): 20150178.
doi: 10.1098/rstb.2015.0178 |
|
Williams E R. 1989. The tripole structure of thunderstorms. Journal of Geophysical Research. 94(D11): 13151-13167. | |
Woolford D G, Dean C B, Martell D L, et al. Lightning-caused forest fire risk in Northwestern Ontario, Canada, is increasing and associated with anomalies in fire weather. Environmetrics, 2014, 25 (6): 406- 416.
doi: 10.1002/env.2278 |
|
Xie Y R, Xu K, Zhang T, et al. 2013. Five-year study of cloud-to-ground lightning activity in Yunnan province, China. Atmospheric Research, 129–130(Jul. ): 49–57. | |
Yang Y R, Song D, Wang S Y, et al. Characteristics of cloud-to-ground lightning and its relationship with climate change in Muli, Sichuan province, China. Natural Hazards, 2018, 91 (3): 1097- 1112.
doi: 10.1007/s11069-018-3169-3 |
|
Yanoviak S P, Gora E M, Burchfield J M, et al. Quantification and identification of lightning damage in tropical forests. Ecology and Evolution, 2017, 7 (14): 5111- 5122.
doi: 10.1002/ece3.3095 |
|
Yusop N, Ahmad M R, Abdullah M, et al. 2019. Cloud-to-Ground lightning observations over the Western Antarctic region, Polar Science, 20(Pt1): 84−91. | |
Zhang H M, Qiao Y Q, Chen H X, et al. Experimental study on flaming ignition of pine needles by simulated lightning discharge. Fire Safety Journal, 2021, 120 (Mar.): 103029. | |
Zhang Q Y, Homayouni S, Yao H, et al. Joint analysis of lightning-induced forest fire and surface influence factors in the Great Xing’an Range. Forests, 2022, 13, 1867.
doi: 10.3390/f13111867 |
|
Zhao F J, Liu Y Q, Shu L F. Change in the fire season pattern from bimodal to unimodal under climate change: the case of Daxing’anling in Northeast China. Agricultural and Forest Meteorology, 2020, 291 (1): 108075. | |
Zhu Y, Liu N A, Deng Z H, et al. Experimental study on the probability of lightning induced ignition of forest fuels. Fire Safety Science, 2012, 21 (2): 71- 77. |
[1] | 薛盼盼,缪宁,岳喜明,陶琼,张远东,冯秋红,毛康珊. 青藏高原东缘岷江冷杉径向生长对升温响应分异的坡向和海拔差异[J]. 林业科学, 2023, 59(7): 65-77. |
[2] | 焦强英,韩宗甫,王炜烨,刘迪,潘鹏旭,李博,张念慈,王萍,陶金花,范萌. 基于多源数据和机器学习方法的大兴安岭地区雷击火驱动因子及火险预测模型[J]. 林业科学, 2023, 59(6): 74-87. |
[3] | 韦雪蕾,张国钢,贾茹,姬云瑞,徐红英,杨泽玉,刘化金,刘宇霖,杨培宇. 黑龙江兴凯湖水鸟多样性变化及其影响因素[J]. 林业科学, 2023, 59(6): 118-129. |
[4] | 王明玉, 李伟克, 舒立福, 司莉青, 赵凤君, 李威, 李笑笑. 雷击火高发的呼中地区瞭望塔配置的可视性评价[J]. 林业科学, 2023, 59(10): 9-21. |
[5] | 李威, 舒立福, 王明玉, 李伟克, 苑尚博, 司莉青, 赵凤君, 宋佳军, 王亚惠. 大兴安岭1980-2021年雷击火时空分布特征[J]. 林业科学, 2023, 59(10): 22-31. |
[6] | 陈涤非, 王明玉, 司莉青, 赵凤君, 李威, 李伟克, 舒立福. 四川省雷击火时空分布特征及影响因素分析[J]. 林业科学, 2023, 59(10): 32-40. |
[7] | 司莉青,苑尚博,赵凤君,舒立福,王明玉,马启明. 雷电、雷击火发生与人类活动关系[J]. 林业科学, 2022, 58(11): 1-9. |
[8] | 王明玉,苑尚博,李威,李伟克,宋佳军,司莉青,王亚惠,赵凤君,田晓瑞,李笑笑,舒立福. 密集雷电引发大兴安岭群发雷击火过程及其影响因素[J]. 林业科学, 2022, 58(11): 10-20. |
[9] | 李伟克,舒立福,苑尚博,宋佳军,李威,司莉青,赵凤君,王亚惠,王明玉. 基于VLF/LF三维闪电定位系统的大兴安岭闪电时空分布特征[J]. 林业科学, 2022, 58(11): 21-30. |
[10] | 王爱君,路东晔,张国盛,黄海广,王颖,呼斯楞,敖民. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布[J]. 林业科学, 2021, 57(8): 43-55. |
[11] | 白蕤,李宁,刘少军,陈小敏,邹海平,吕润. 未来气候变化背景下橡胶树白根病在中国的风险分析[J]. 林业科学, 2021, 57(6): 37-45. |
[12] | 赵光华,崔馨月,王智,荆红利,樊保国. 气候变化背景下我国酸枣潜在适生区预测[J]. 林业科学, 2021, 57(6): 158-168. |
[13] | 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响[J]. 林业科学, 2021, 57(10): 102-110. |
[14] | 于健,陈佳佳,周光,刘国华,王永平,李俊清,刘琪璟. 横断山脉中部川滇冷杉和丽江云杉径向生长对气象因子的响应[J]. 林业科学, 2020, 56(12): 28-38. |
[15] | 潘天天,李彦,王忠媛,陆世通,叶琳峰,陈森,谢江波. 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系[J]. 林业科学, 2020, 56(12): 49-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||