林业科学 ›› 2025, Vol. 61 ›› Issue (4): 81-91.doi: 10.11707/j.1001-7488.LYKX20240407
许可儿1,汤璐瑶2,张博纳1,叶琳峰1,王忠媛1,谢江波1,*()
收稿日期:
2024-06-30
出版日期:
2025-04-25
发布日期:
2025-04-21
通讯作者:
谢江波
E-mail:0208xiejiangbo@163.com
基金资助:
Ke’er Xu1,Luyao Tang2,Bona Zhang1,Linfeng Ye1,Zhongyuan Wang1,Jiangbo Xie1,*()
Received:
2024-06-30
Online:
2025-04-25
Published:
2025-04-21
Contact:
Jiangbo Xie
E-mail:0208xiejiangbo@163.com
摘要:
目的: 分析国槐功能性状沿降水梯度带的变异及气候因子对功能性状变异的影响,以揭示其生境适应策略。方法: 沿我国东南湿润区至西北干旱区的降水梯度带选取10个研究点,以共有种国槐为对象,测定其功能性状,包括叶功能性状(气孔大小、气孔密度、叶脉密度、胡伯尔值、比叶质量、叶片厚度、栅栏组织厚度、海绵组织厚度、栅海比)和枝功能性状(导管直径、导管密度、导管壁厚、厚度跨度比、木质部密度)。量化气候因子(生长季均温、生长季日照时间、年均降水量)对国槐功能性状变异的影响,揭示性状间耦合关系,阐明国槐的生境适应策略。结果: 国槐功能性状中变异系数较大的3个性状为栅栏组织厚度(37.26%)、栅海比(32.51%)和导管密度(27.53%),变异系数较小的3个性状为导管直径(12.07%)、木质部密度(13.32%)和叶脉密度(14.75%);年均降水量与国槐枝功能性状变异的相关性显著(P < 0.05),生长季均温和生长季日照时间与国槐功能性状变异的相关性不显著;国槐比叶质量与叶片厚度和栅栏组织厚度显著正相关(P < 0.05),导管直径与导管密度极显著负相关(P < 0.01)。结论: 性状变异和性状间耦合反映国槐的生境适应策略,叶功能性状的总体变异性大于枝功能性状。气候因子中年均降水量对国槐功能性状变异的影响最大,主要影响枝功能性状变异。与湿润区相比,半干旱/干旱区国槐通过增加叶片厚度提高叶片储水能力,同时通过增大导管直径提高输水效率,实现其短期内的水分利用。国槐通过叶和枝功能性状间的协作,使其在半干旱/干旱区可高效利用降水脉冲,实现快速生长。
中图分类号:
许可儿,汤璐瑶,张博纳,叶琳峰,王忠媛,谢江波. 国槐功能性状沿降水梯度带的变异规律[J]. 林业科学, 2025, 61(4): 81-91.
Ke’er Xu,Luyao Tang,Bona Zhang,Linfeng Ye,Zhongyuan Wang,Jiangbo Xie. Variation in Functional Traits of Sophora japonica across a Precipitation Gradient[J]. Scientia Silvae Sinicae, 2025, 61(4): 81-91.
表1
研究点及其环境特征"
区域 Region | 研究点 Site | 经度 Longitude (E)/(°) | 纬度 Latitude (N)/(°) | 生长季均温 Mean growing-season temperature/℃ | 年均降水量 Mean annual precipitation/ (mm·a?1) | 生长季日照时间 Sunshine duration/h |
湿润区 Humid region | 宣城Xuancheng | 118.775 | 30.338 | 25.31 | 5.94 | |
信阳Xinyang | 113.853 | 32.066 | 24.74 | 5.31 | ||
半湿润区 Semi humid region | 三门峡Sanmenxia | 110.543 | 34.486 | 23.81 | 555.64 | 6.38 |
铜川Tongchuan | 109.141 | 35.402 | 20.29 | 584.43 | 6.83 | |
庆阳Qingyang | 108.371 | 35.886 | 19.02 | 581.89 | 7.02 | |
半干旱/干旱区 Semi arid/arid region | 吴忠Wuzhong | 105.779 | 36.457 | 20.50 | 235.59 | 9.11 |
金昌Jinchang | 102.007 | 38.334 | 15.79 | 226.52 | 8.45 | |
张掖Zhangye | 100.178 | 39.233 | 19.55 | 131.72 | 9.26 | |
酒泉Jiuquan | 98.635 | 39.674 | 19.18 | 81.85 | 9.37 | |
哈密Hami | 93.445 | 42.620 | 23.37 | 44.17 | 10.81 |
图2
国槐功能性状在不同气候区域的差异 箱线图展示中位数、上四分位数(75%)、下四分位数(25%)、最大值和最小值范围,不同小写字母代表平均值差异显著(P < 0.05)。The box plot displays the median, upper quartile (75%), lower quartile (25%), and the range of maximum and minimum values. Different lowercase letters indicate statistically significant differences between mean values (P < 0.05)."
图3
国槐功能性状沿降水梯度带的变异系数 PT:栅栏组织厚度Palisade tissue thickness;P/S:栅海比Palisade to spongy tissue ratio;N:导管密度Vessel density;LMA:比叶质量Specific leaf mass;Sd:气孔密度Stomatal density;Tl:叶片厚度Leaf thickness;(t/b)2:厚度跨度比Thickness span ratio;ST:海绵组织厚度Spongy tissue thickness;Hv:胡伯尔值Huber value;Ss:气孔大小Stomatal size;T:导管壁厚Vessel wall thicknesses;Dv:叶脉密度Vein density;WD:木质部密度Wood density;D:导管直径Vessel diameter."
图4
国槐功能性状沿降水梯度带的方差分量 P/S:栅海比Palisade to spongy tissue ratio;PT:栅栏组织厚度Palisade tissue thickness;WD:木质部密度Wood density;N:导管密度Vessel density;Tl:叶片厚度Leaf thickness;LMA:比叶质量Specific leaf mass;D:导管直径Vessel diameter;Sd:气孔密度Stomatal density;(t/b)2:厚度跨度比Thickness span ratio;Ss:气孔大小Stomatal size;T:导管壁厚Vessel wall thicknesses;Hv:胡伯尔值Huber value;ST:海绵组织厚度Spongy tissue thickness;Dv:叶脉密度Vein density."
图6
国槐功能性状间相关性分析 *:P < 0.05;**:P < 0.01。LMA:比叶质量Specific leaf mass;Tl:叶片厚度Leaf thickness;PT:栅栏组织厚度Palisade tissue thickness;ST:海绵组织厚度Spongy tissue thickness;P/S:栅海比Palisade to spongy tissue ratio;WD:木质部密度Wood density;Hv:胡伯尔值Huber value;Dv:叶脉密度Vein density;Ss:气孔大小Stomatal size;Sd:气孔密度Stomatal density;D:导管直径Vessel diameter;N:导管密度Vessel density;T:导管壁厚Vessel wall thicknesses;(t/b)2:厚度跨度比Thickness span ratio."
段贝贝, 赵成章, 徐 婷, 等. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析. 植物生态学报, 2016, 40 (12): 1289- 1297.
doi: 10.17521/cjpe.2016.0215 |
|
Duan B B, Zhao C Z, Xu T, et al. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou. Chinese Journal of Plant Ecology, 2016, 40 (12): 1289- 1297.
doi: 10.17521/cjpe.2016.0215 |
|
方 菁, 叶琳峰, 陈 森, 等. 自然和人工生境被子植物枝木质部结构与功能差异. 植物生态学报, 2021, 45 (6): 650- 658.
doi: 10.17521/cjpe.2020.0430 |
|
Fang J, Ye L F, Chen S, et al. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats. Chinese Journal of Plant Ecology, 2021, 45 (6): 650- 658.
doi: 10.17521/cjpe.2020.0430 |
|
付茵茵, 周继磊, 张元莉, 等. 槐树(Sophora japonica L. )种质资源现状及研究进展. 河北农业科学, 2024, 28 (1): 45- 50, 98. | |
Fu Y Y, Zhou J L, Zhang Y L, et al. Current situation and research progress of Sophora japonica L. germplasm resources. Journal of Hebei Agricultural Sciences, 2024, 28 (1): 45- 50, 98. | |
韩 玲, 赵成章, 徐 婷, 等. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系. 植物生态学报, 2017, 41 (5): 529- 538.
doi: 10.17521/cjpe.2016.0123 |
|
Han L, Zhao C Z, Xu T, et al. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China. Chinese Journal of Plant Ecology, 2017, 41 (5): 529- 538.
doi: 10.17521/cjpe.2016.0123 |
|
何继涛. 暗管排水对地下水位和地下水矿化度影响研究. 宁夏农林科技, 2015, 56 (11): 83- 84. | |
He J T. A study on effect of pipe drainage on groundwater level and mineralization degree of groundwater. Journal of Ningxia Agriculture and Forestry Science and Technology, 2015, 56 (11): 83- 84. | |
何芸雨, 郭水良, 王 喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43 (12): 1021- 1035.
doi: 10.17521/cjpe.2019.0122 |
|
He Y Y, Guo S L, Wang Z. Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 2019, 43 (12): 1021- 1035.
doi: 10.17521/cjpe.2019.0122 |
|
陆世通, 陈 森, 李 彦, 等. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系. 植物生态学报, 2021, 45 (6): 659- 669.
doi: 10.17521/cjpe.2020.0402 |
|
Lu S T, Chen S, Li Y, et al. Relationships among xylem transport, anatomical structure and mechanical strength in stems and roots of three Podocarpaceae species. Chinese Journal of Plant Ecology, 2021, 45 (6): 659- 669.
doi: 10.17521/cjpe.2020.0402 |
|
孙佳慧, 史海兰, 陈科宇, 等. 植物细根功能性状的权衡关系研究进展. 植物生态学报, 2023, 47 (8): 1055- 1070.
doi: 10.17521/cjpe.2022.0456 |
|
Sun J H, Shi H L, Chen K Y, et al. Research advances on trade-off relationships of plant fine root functional traits. Chinese Journal of Plant Ecology, 2023, 47 (8): 1055- 1070.
doi: 10.17521/cjpe.2022.0456 |
|
王秀琴. 北京地区国槐种质资源调查及新品种选育. 植物学研究, 2020, 9 (4): 409- 414.
doi: 10.12677/BR.2020.94052 |
|
Wang X Q. Investigation of germplasm resources and breeding of new variety of Sophora japonica in Beijing. Botanical Research, 2020, 9 (4): 409- 414.
doi: 10.12677/BR.2020.94052 |
|
王雨晴, 吴 莎, 许 言, 等. 科尔沁沙地不同种源元宝枫功能性状变异及其环境驱动因子研究. 西北植物学报, 2024, 44 (2): 300- 309. | |
Wang Y Q, Wu S, Xu Y, et al. Study on the variation of functional traits and environmental driving factors of different species origins of Acer truncatum in the Horqin Sandy Land. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44 (2): 300- 309. | |
徐 婷, 赵成章, 段贝贝, 等. 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性. 生态学杂志, 2016, 35 (1): 41- 47. | |
Xu T, Zhao C Z, Duan B B, et al. Slope-related variations of different levels of vein density and leaf size in Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Ecology, 2016, 35 (1): 41- 47. | |
徐韵佳, 葛全胜, 戴君虎, 等. 近50年中国典型木本植物展叶始期温度敏感度变化及原因. 生态学报, 2019, 39 (21): 8135- 8143. | |
Xu Y J, Ge Q S, Dai J H, et al. Variations in temperature sensitivity of leaf unfolding date and their influencing factors for typical woody plants in China over the past 50 years. Acta Ecologica Sinica, 2019, 39 (21): 8135- 8143. | |
杨 光. 2017. 黑河中游地下水深埋对节水灌溉的响应. 杨凌: 西北农林科技大学. | |
Yang G. 2017. Effect of water-saving irrigation on spatial distribution of groundwater in middle stream of the Heihe River basin. Yangling: Northwest A & F University. [in Chinese] | |
杨 琪, 李书恒, 李家豪, 等. 西安4种落叶乔木物候期对气候变化的响应. 生态学报, 2022, 42 (4): 1462- 1473. | |
Yang Q, Li S H, Li J H, et al. Response of phenology phases of four deciduous trees to climate change in Xiʼan. Acta Ecoligica Sinica, 2022, 42 (4): 1462- 1473. | |
杨亚兵. 2020. 酒泉东盆地地下水演化研究. 兰州: 兰州大学. | |
Yang Y B. 2020. Study on the evolution of groundwater in Jiuquan east basin. Lanzhou: Lanzhou University. [in Chinese] | |
叶 鹏. 国槐生长调控试验对比及养护技术研究. 绿色科技, 2023, 25 (23): 12- 15, 55. | |
Ye P. Experimental comparison and maintenance techniques of growth regulation of Styphnolobium japonicum. Journal of Green Science and Technology, 2023, 25 (23): 12- 15, 55. | |
张 锋, 刘金锦, 张连合, 等. 国槐硬枝扦插繁育技术. 植物学研究, 2023, 12 (5): 274- 281.
doi: 10.12677/BR.2023.125036 |
|
Zhang F, Liu J J, Zhang L H, et al. Techniques for hard branch cutting propagation of Sophora japonica. Botanical Research, 2023, 12 (5): 274- 281.
doi: 10.12677/BR.2023.125036 |
|
张军周, 勾晓华, 赵志千, 等. 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 2013, 37 (10): 972- 977. | |
Zhang J Z, Gou X H, Zhao Z Q, et al. Improved method of obtaining micro-core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 2013, 37 (10): 972- 977. | |
张 明, 高慧蓉, 莫惟轶, 等. 黄土高原草地植物叶脉性状沿环境梯度的变化规律. 生态学报, 2022, 42 (19): 8082- 8093. | |
Zhang M, Gao H R, Mo W Y, et al. Variation in leaf vein traits along environmental gradient in Loess Plateau grasslands. Acta Ecologica Sinica, 2022, 42 (19): 8082- 8093. | |
Ávila-Lovera E, Zerpa A J, Santiago L S. Stem photosynthesis and hydraulics are coordinated in desert plant species. New Phytologist, 2017, 216 (4): 1119- 1129.
doi: 10.1111/nph.14737 |
|
Bello F D, Lavorel S, Lavergne S, et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography, 2013, 36 (3): 393- 402.
doi: 10.1111/j.1600-0587.2012.07438.x |
|
Bertolino L T, Caine R S, Gray J E. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 2019, 10, 225.
doi: 10.3389/fpls.2019.00225 |
|
Chen Z C, Li S, Wan X C, et al. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 2022, 13, 926535.
doi: 10.3389/fpls.2022.926535 |
|
Currier C M, Sala O E. Precipitation versus temperature as phenology controls in drylands. Ecology, 2022, 103 (11): e3793.
doi: 10.1002/ecy.3793 |
|
Dong N, Prentice I C, Wright I J, et al. Components of leaf-trait variation along environmental gradients. New Phytologist, 2020, 228 (1): 82- 94.
doi: 10.1111/nph.16558 |
|
Franks P J, Drake P L, Beerling D J. 2009. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment, 32(12): 1737−1748. | |
Fuchs S, Leuschner C, Link R M, et al. Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. New Phytologist, 2021, 231 (4): 1387- 1400.
doi: 10.1111/nph.17448 |
|
Hacke U G, Sperry J S, Pittermann J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 2000, 1 (1): 31- 41.
doi: 10.1078/1439-1791-00006 |
|
Hacke U G, Sperry J S, Pockman W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001, 126 (4): 457- 461.
doi: 10.1007/s004420100628 |
|
Hacke U G, Spicer R, Schreiber S G, et al. An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell Environ, 2017, 40 (6): 831- 845.
doi: 10.1111/pce.12777 |
|
Hajek P, Link R M, Nock C A, et al. Mutually inclusive mechanisms of drought-induced tree mortality. Global Change Biology, 2022, 28 (10): 3365- 3378.
doi: 10.1111/gcb.16146 |
|
Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424 (6951): 901- 908.
doi: 10.1038/nature01843 |
|
Johnson K M, Brodribb T J. Evidence for a trade-off between growth rate and xylem cavitation resistance in Callitris rhomboidea. Tree Phytologist, 2023, 43 (7): 1055- 1065. | |
Kang X M, Li Y N, Zhou J Y, et al. Response of leaf traits of eastern Qinghai-Tibetan broad-leaved woody plants to climatic factors. Frontiers in Plant Science, 2021, 12, 679726.
doi: 10.3389/fpls.2021.679726 |
|
Lam W N, Huang J, Tay A H T, et al. Leaf and twig traits predict habitat adaptation and demographic strategies in tropical freshwater swamp forest trees. New Phytologist, 2024, 243 (3): 881- 893.
doi: 10.1111/nph.19876 |
|
Lewis A M. Measuring the hydraulic diameter of a pore or conduit. American Journal of Botany, 1992, 79 (10): 1158- 1161.
doi: 10.1002/j.1537-2197.1992.tb13712.x |
|
Liang E, Eckstein D, Shao X M. Seasonal cambial activity of relict Chinese pine at the northern limit of its natural distribution in north China-Exploratory results. IAWA Journal, 2009, 30 (4): 371- 378.
doi: 10.1163/22941932-90000225 |
|
Liu C C, He N P, Zhang J H, et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 2017, 32 (1): 20- 28. | |
Liu Q, Li Z H, Wu J Y. Research progress on leaf anatomical structures of plants under drought stress. Agricultural Science & Technology, 2016, 17 (1): 4- 7. | |
Lu H M, Sun M, Ma Y D, et al. Contrasting patterns of variation in foliar pH between a woody species and an herbaceous species along a 3 300 km water availability gradient in China. Catena, 2022, 216 (3): 106408. | |
Lü X M, Zhou G S, Wang Y H, et al. Effects of changing precipitation and warming on functional traits of zonal Stipa plants from Inner Mongolian grassland. Journal of Meteorological Research, 2016, 30 (3): 412- 425.
doi: 10.1007/s13351-016-5091-5 |
|
Meng T T, Wang H, Harrison S P, et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences, 2015, 12 (18): 5339- 5352.
doi: 10.5194/bg-12-5339-2015 |
|
Miller-Rushing A J , Primack R B. 2008. Global warming and flowering times in Thoreauʼs Concord: a community perspective. Ecology, 89(2): 332−341. | |
Peguero-Pina J J, Siso S, Flexas J, et al. Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytologist, 2017, 214 (2): 585- 596.
doi: 10.1111/nph.14406 |
|
Pratt R B, Jacobsen A L, Ewers F W, et al. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 2007, 174 (4): 787- 798.
doi: 10.1111/j.1469-8137.2007.02061.x |
|
Sancho-Knapik D, Escudero A, Mediavilla S, et al. Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytologist, 2021, 230 (2): 521- 534.
doi: 10.1111/nph.17151 |
|
Siefert A, Ritchie M E. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment. Oecologia, 2016, 181 (1): 245- 255.
doi: 10.1007/s00442-016-3563-z |
|
Song Z Q, Fu Y H, Du Y J, et al. Global warming increases latitudinal divergence in flowering dates of a perennial herb in humid regions across eastern Asia. Agricultural and Forest Meteorology, 2021, 296, 108209.
doi: 10.1016/j.agrformet.2020.108209 |
|
Wang J F, Wang X X, Ji Y H, et al. Climate factors determine the utilization strategy of forest plant resources at large scales. Frontiers in Plant Science, 2022a, 13, 990441.
doi: 10.3389/fpls.2022.990441 |
|
Wang Z H, Townsend P A, Kruger E L. Leaf spectroscopy reveals divergent inter- and intra-species foliar trait covariation and trait-environment relationships across NEON domains. New Phytologist, 2022b, 235 (3): 923- 938.
doi: 10.1111/nph.18204 |
|
Westerband A C, Funk J L, Barton K E. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of Botany, 2021, 127 (4): 397- 410.
doi: 10.1093/aob/mcab011 |
|
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428 (6985): 821- 827.
doi: 10.1038/nature02403 |
|
Xie J B, Wang Z Y, Li Y. Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients. New Phytologist, 2022, 235 (3): 907- 922.
doi: 10.1111/nph.18189 |
|
Zhang J, Li P Z. Response of plant functional traits to climate change. IOP Publishing, 2019, 300 (3): 032078. | |
Zhao W L, Chen Y J, Brodribb T J, et al. Weak co-ordination between vein and stomatal densities in 105 angiosperm tree species along altitudinal gradients in Southwest China. Functional Plant Biology, 2016, 43 (12): 1126- 1133.
doi: 10.1071/FP16012 |
[1] | 高婉婷, 胡晓创, 孙守家, 张劲松, 孟平, 蔡金峰. 基于优化的MaxEnt模型预测未来气候变化下刺槐在中国的空间分布[J]. 林业科学, 2025, 61(4): 104-116. |
[2] | 崔妞妞,庞建壮,张祎帆,许行,张勤,张志强. 海河典型流域气候变化和植被恢复对水文的影响——以张家口清水河流域为例[J]. 林业科学, 2025, 61(3): 38-49. |
[3] | 黄云,徐黎亮,郑博福,宋旭,胡方清,朱锦奇,万炜. 亚热带典型森林生产力及碳利用率的气候变化响应[J]. 林业科学, 2025, 61(3): 121-134. |
[4] | 朱铭玮,赵薇,付威,高云鹏,王文武,解志军,李淑娴. 国槐种子成熟过程及其水分时空变化[J]. 林业科学, 2024, 60(9): 41-49. |
[5] | 张雨田,石军南,张怀清,吴炳伦. 洞庭湖湿地植被时空动态及其驱动力分析[J]. 林业科学, 2024, 60(8): 1-13. |
[6] | 朱教君,王高峰,张怀清,高添. 关于“气候智慧林业”研究的思考[J]. 林业科学, 2024, 60(7): 1-7. |
[7] | 赵杼祺, 胡振宏, 何鲜, 黄志群. 森林木质残体微生物群落构建机制研究进展[J]. 林业科学, 2024, 60(2): 106-117. |
[8] | 申佳艳,范泽鑫,张慧,彭新华,李金花,余潇,杨文雄,李云芳,李新宇,刘悦宁,苏建荣. 云南3种松树径向生长的气候因子响应异质性[J]. 林业科学, 2024, 60(11): 48-62. |
[9] | 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测[J]. 林业科学, 2024, 60(11): 63-74. |
[10] | 刘磊,赵立娟,刘佳奇,张辉盛,张志伟,黄瑞芬,高瑞贺. 基于优化的MaxEnt模型预测气候变化下松褐天牛在我国的潜在适生区[J]. 林业科学, 2024, 60(11): 139-148. |
[11] | 薛盼盼,缪宁,岳喜明,陶琼,张远东,冯秋红,毛康珊. 青藏高原东缘岷江冷杉径向生长对升温响应分异的坡向和海拔差异[J]. 林业科学, 2023, 59(7): 65-77. |
[12] | 韦雪蕾,张国钢,贾茹,姬云瑞,徐红英,杨泽玉,刘化金,刘宇霖,杨培宇. 黑龙江兴凯湖水鸟多样性变化及其影响因素[J]. 林业科学, 2023, 59(6): 118-129. |
[13] | 王亚,王军辉,王福德,刘逸夫,谭灿灿,袁艳超,聂稳,刘建锋,常二梅,贾子瑞. 末次间冰期以来及未来气候情景下红皮云杉适生分布区模拟[J]. 林业科学, 2023, 59(12): 1-12. |
[14] | 张淑宁,陈俊兴,敖敦,红梅,张雅茜,包福海,王淋,乌云塔娜,白玉娥,包文泉. 气候变化背景下我国长柄扁桃潜在适生区预测[J]. 林业科学, 2023, 59(12): 25-36. |
[15] | 司莉青,王明玉,陈锋,舒立福,赵凤君,李伟克. 雷电分布特征与雷击森林火预警[J]. 林业科学, 2023, 59(10): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||