林业科学 ›› 2024, Vol. 60 ›› Issue (8): 164-173.doi: 10.11707/j.1001-7488.LYKX20230077
收稿日期:
2023-03-23
出版日期:
2024-08-25
发布日期:
2024-09-03
通讯作者:
陶静
E-mail:lixinyubjfu@bjfu.edu.cn
基金资助:
Xinyu Li(),Cheng Qian,Jing Tao*,Shixiang Zong
Received:
2023-03-23
Online:
2024-08-25
Published:
2024-09-03
Contact:
Jing Tao
E-mail:lixinyubjfu@bjfu.edu.cn
摘要:
目的: 首次解析入侵害虫长林小蠹Hylurgus ligniperda线粒体基因组的序列和特征,在线粒体基因组学水平探讨长林小蠹与近缘物种的亲缘关系,丰富了象甲科昆虫线粒体基因组学数据的多样性,为推进我国重大林业检疫性害虫长林小蠹的分子鉴定、种群监测和管理提供数据支持。方法: 利用Illumina Novaseq 6000平台进行高通量测序,参考已发表的鞘翅目昆虫线粒体基因组数据,对组装好的长林小蠹线粒体基因组进行注释和特征分析;运用tRNA Scan-SE 2.0网络平台预测tRNA的二级结构;联合鞘翅目的23个物种,基于最大似然法重建长林小蠹及象甲科其他近缘物种的进化关系。结果: 1) 长林小蠹线粒体基因组全长为
中图分类号:
李心钰,钱铖,陶静,宗世祥. 入侵害虫长林小蠹线粒体全基因组的测定与分析[J]. 林业科学, 2024, 60(8): 164-173.
Xinyu Li,Cheng Qian,Jing Tao,Shixiang Zong. Analysis of the Complete Mitochondrial Genome of an Invasive Bark Beetle Species, Hylurgus ligniperda (Coleoptera: Curculionidae, Scolytinae)[J]. Scientia Silvae Sinicae, 2024, 60(8): 164-173.
表1
本研究所用物种的分类学信息及线粒体基因组GenBank序列号①"
科 Family | 亚科 Subfamily | 物种名 Species name | GenBank序列号 GenBank accession number |
卷象科Attelabidae | 芒果切叶象 Deporaus marginatus | MT740322 | |
三锥象甲科 Brentidae | 甘薯蚁象 Cylas formicarius | MK421358 | |
天牛科 Cerambycidae | 大麻多节天牛 Agapanthia daurica | MN473114 | |
象甲科 Curculionidae | 隐喙象亚科 Cryptorhynchinae | 芒果果肉象Sternochetus gravis | MW836140 |
芒果果核象 Sternochetus mangiferae | NC_068213 | ||
- Trigonopterus carinirostris | MT653608 | ||
- Trigonopterus daun | MT653610 | ||
粗喙象亚科 Entiminae | 金足绿象 Chlorophanus auripes | OM112264 | |
茶丽纹象甲 Myllocerinus aurolineatus | MH197100 | ||
根瘤象属 Sitona obsoletus | MH814932 | ||
魔喙象亚科 Molytinae | 萧氏松茎象 Hylobitelus xiaoi | OQ161263 | |
板栗雪片象 Niphades castanea | MT232762 | ||
白松木蠹象 Pissodes strobi | MW452482 | ||
云南木蠹象 Pissodes yunnanensis | OK135167 | ||
小蠹亚科 Scolytinae | 肾点毛小蠹 Dryocoetes autographus | KX035207 | |
根小蠹属 Hylastes attenuatus | KX035212 | ||
长林小蠹 Hylurgus ligniperda* | OQ469318* | ||
六齿小蠹 Ips acuminatus | MK988441 | ||
粗齿小蠹 Ips calligraphus | MW589547 | ||
瘤小蠹属 Orthotomicus laricis | KX035213 | ||
星坑小蠹属 Pityogenes bidentatus | KX035211 | ||
细小蠹属 Pityophthorus pubescens | KX035209 | ||
四眼小蠹 Polygraphus poligraphus | OK110248 |
表2
长林小蠹线粒体基因组注释"
基因 Gene | 长度 Length/bp | 位置 Position/bp | 起始 密码子 Start codon | 终止 密码子 Stop codon | 反密码子 Anticodon | 编码链 Coding strand |
trnI | 65 | 1-65 | — | — | GAT | J |
trnQ | 69 | 704-636 | — | — | CAA | N |
trnM | 70 | 711-780 | — | — | ATG | J |
nad2 | 972 | 802- | ATA | TAA | — | J |
trnW | 65 | — | — | TGA | J | |
trnC | 64 | 1917-1854 | — | — | TGC | N |
trnY | 65 | 1987-1923 | — | — | TAC | N |
cox1 | 1980- | ATC | TAA | — | J | |
trnL2 | 65 | — | — | TTA | J | |
cox2 | 657 | ATA | TAA | — | J | |
trnK | 67 | — | — | AAG | J | |
trnD | 63 | — | — | GAC | J | |
atp8 | 156 | ATT | TAA | — | J | |
atp6 | 666 | ATG | TAA | — | J | |
cox3 | 783 | ATG | TAA | — | J | |
trnG | 66 | — | — | GGA | J | |
nad3 | 345 | ATA | TAA | — | J | |
trnA | 63 | — | — | GCA | J | |
trnR | 65 | — | — | CGA | J | |
trnN | 65 | — | — | AAC | J | |
trnS1 | 66 | — | — | AGA | J | |
trnE | 66 | — | — | GAA | J | |
trnF | 64 | — | — | TTC | N | |
nad5 | TTG | T | — | N | ||
trnH | 64 | — | — | CAC | N | |
nad4 | ATA | TAA | — | N | ||
nad4L | 268 | ATT | T | — | N | |
trnT | 65 | — | — | ACA | J | |
trnP | 66 | — | — | CCA | N | |
nad6 | 507 | ATT | TAA | — | J | |
cob | ATG | T | — | J | ||
trnS2 | 69 | — | — | TCA | J | |
nad1 | 886 | ATT | T | — | N | |
trnL1 | 64 | — | — | CTA | N | |
rrnL | — | — | — | N | ||
trnV | 66 | — | — | GTA | N | |
rrnS | 770 | — | — | — | N |
杜会聪, 王 瑶, 方加兴, 等. 2019. 马尾松毛虫线粒体全基因组的测定与分析. 林业科学, 55(12): 162–172. | |
Du H C, Wang Y, Fang J X, et al. 2019. Sequencing and analysis of the complete mitochondrial genome of Dendrolimus punctatus (Lepidoptera : Lasiocampidae). Scientia Silvae Sinicae, 55 (12): 162–172. [in Chinese] | |
梁 振, 张俊华, 杨 定, 等. 2005—2015年我国口岸截获外来昆虫概况. 植物检疫, 2017, 31 (6): 34- 68. | |
Liang Z, Zhang J H, Yang D, et al. Overview of alien insects intercepted at China ports from 2005 to 2015. Plant Quarantine, 2017, 31 (6): 34- 68. | |
聂瑞娥, 杨星科. 2014. 鞘翅目昆虫线粒体基因组研究进展. 昆虫学报, 57(7): 860–868. | |
Nie R E, Yang X K. Research progress in mitochondrial genomes of Coleoptera. Acta Entomologica Sinica, 57 (7): 860–868. [in Chinese] | |
任利利, 陶 静, 武海卫, 等. 重大害虫长林小蠹入侵我国的首次发现与侵染特征. 林业科学, 2021, 57 (5): 140- 150.
doi: 10.11707/j.1001-7488.20210513 |
|
Ren L L, Tao J, Wu H W, et al. The first discovery and infective characteristics of a major invasive pest Hylurgus ligniperda (Coleoptera: Scolytidae) in China. Scientia Silvae Sinicae, 2021, 57 (5): 140- 150.
doi: 10.11707/j.1001-7488.20210513 |
|
宋光远, 张俊华, 杨 定, 等. 长林小蠹在中国的适生区预测. 植物检疫, 2018, 32 (5): 66- 70. | |
Song G Y, Zhang J H, Yang D, et al. Potential geographical distributions of Hylurgus ligniperda (Coleoptera: Scolytinae) in China. Plant Quarantine, 2018, 32 (5): 66- 70. | |
周玉婷, 葛雪贞, 邹 娅, 等. 基于Maxent模型的长林小蠹的全球及中国适生区预测. 北京林业大学学报, 2022, 44 (11): 90- 99.
doi: 10.12171/j.1000-1522.20210345 |
|
Zhou Y T, Ge X Z, Zou Y, et al. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model. Journal of Beijing Forestry University, 2022, 44 (11): 90- 99.
doi: 10.12171/j.1000-1522.20210345 |
|
Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215 (3): 403- 410.
doi: 10.1016/S0022-2836(05)80360-2 |
|
Bernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 2013, 69 (2): 313- 319.
doi: 10.1016/j.ympev.2012.08.023 |
|
Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer forIllumina sequence data. Bioinformatics, 30(15): 2114–2120. | |
Brockerhoff E G, Jones D C, Kimberley M O, et al. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. Forest Ecology and Management, 2006, 228 (1-3): 234- 240.
doi: 10.1016/j.foreco.2006.02.046 |
|
Cameron S L. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 2014, 59 (1): 95- 117.
doi: 10.1146/annurev-ento-011613-162007 |
|
Chase K D, Kelly D, Liebhold A M, et al. Long-distance dispersal of non-native pine bark beetles from host resources. Ecological Entomology, 2017, 42 (2): 173- 183.
doi: 10.1111/een.12371 |
|
Davydenko K, Vasaitis R, Meshkova V, et al. Fungi associated with the red-haired bark beetle, Hylurgus ligniperda (Coleoptera: Curculionidae) in the forest-steppe zone in eastern Ukraine. European Journal of Entomology, 2014, 111 (4): 561- 565.
doi: 10.14411/eje.2014.070 |
|
Du H, Fang J, Shi X, et al. Comparative analysis of eight mitogenomes of bark beetles and their phylogenetic implications. Insects, 2021a, 12 (10): 949.
doi: 10.3390/insects12100949 |
|
Du Z, Wu Y, Chen Z, et al. Global phylogeography and invasion history of the spotted lanternfly revealed by mitochondrial phylogenomics. Evolutionary Applications, 2021b, 14 (4): 915- 930.
doi: 10.1111/eva.13170 |
|
El Khoury Y, Binazzi F, Nemer N, et al. Bark beetles (Coleoptera Curculionidae Scolytinae) associated with Pinus pinea in Lebanon: new records with remarks on their ecology, distribution and potential threat for forest stands. Redia, 2019, 102, 121- 128.
doi: 10.19263/REDIA-102.19.18 |
|
Fabre J P, Carle P. Contribution à l’étude biologique d’Hylurgus ligniperda F. ( Coleoptera Scolytidae ) dans le Sud-est de la France. Annales des Sciences Forestières, 1975, 32 (1): 55- 71. | |
Haack R A. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Canadian Journal of Forest Research, 2006, 36 (2): 269- 288.
doi: 10.1139/x05-249 |
|
Hazzouri K M, Sudalaimuthuasari N, Kundu B, et al. The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Communications Biology, 2020, 3 (1): 323.
doi: 10.1038/s42003-020-1060-8 |
|
Johnson A J, McKenna D D, Jordal B H, et al. Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae). Molecular Phylogenetics and Evolution, 2018, 127, 229- 238.
doi: 10.1016/j.ympev.2018.05.028 |
|
Jordal B H, Cognato A I. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evolutionary Biology, 2012, 12 (1): 133.
doi: 10.1186/1471-2148-12-133 |
|
Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 2013, 30 (4): 772- 780.
doi: 10.1093/molbev/mst010 |
|
Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 2012, 28 (12): 1647- 1649.
doi: 10.1093/bioinformatics/bts199 |
|
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35 (6): 1547- 1549.
doi: 10.1093/molbev/msy096 |
|
Lartillot N, Rodrigue N, Stubbs D, et al. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology. 62(4): 611–615. | |
Lewis O L, Farr C L, Kaguni L S. Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Molecular Biology, 1995, 4 (4): 263- 278.
doi: 10.1111/j.1365-2583.1995.tb00032.x |
|
Li X Y, Chen Y O, Wang Q K, et al. Molecular and morphological characterization of third instar Palaearctic horse stomach bot fly larvae (Oestridae: Gasterophilinae, Gasterophilus). Veterinary Parasitology, 2018, 262, 56- 74. | |
Li X Y, Yan L P, Pape T, et al. Evolutionary insights into bot flies (Insecta: Diptera: Oestridae) from comparative analysis of the mitochondrial genomes. International Journal of Biological Macromolecules, 2020, 149, 371- 380.
doi: 10.1016/j.ijbiomac.2020.01.249 |
|
Lin W, Park S, Jiang Z R, et al. Native or invasive? The red-haired pine bark beetle Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) in east Asia. Forests, 2021, 12 (7): 950.
doi: 10.3390/f12070950 |
|
Lowe T M, Chan P P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 2016, 44 (1): 54- 57. | |
Marvaldi A E, Sequeira A S, O’Brien C W, et al. 2002. Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Systematic Biology, 51(5): 761–785. | |
Meurisse N, Pawson S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE, 2017, 12 (4): e0174111.
doi: 10.1371/journal.pone.0174111 |
|
Minh B Q, Nguyen M A T, Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 2013, 30 (5): 1188- 1195. | |
Peng Y, Leung H C M, Yiu S M, et al. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 2012, 28 (11): 1420- 1428.
doi: 10.1093/bioinformatics/bts174 |
|
Perna N T, Kocher T D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 1995, 41 (3): 353- 358.
doi: 10.1007/BF01215182 |
|
Pistone D, Gohli J, Jordal B H. Molecular phylogeny of bark and ambrosia beetles (Curculionidae: Scolytinae) based on 18 molecular markers. Systematic Entomology, 2018, 43 (2): 387- 406.
doi: 10.1111/syen.12281 |
|
Shao R, Barker S C. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Molecular Biology and Evolution, 2003, 20 (3): 362- 370.
doi: 10.1093/molbev/msg045 |
|
Shao R, Zhu X Q, Barker S C, et al. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biology and Evolution, 2012, 4 (11): 1088- 1101.
doi: 10.1093/gbe/evs088 |
|
Sheffield N C, Song H, Cameron S L, et al. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Molecular Biology and Evolution, 2008, 25 (11): 2499- 2509.
doi: 10.1093/molbev/msn198 |
|
Shin S, Clarke D J, Lemmon A R, et al. Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. Molecular Biology and Evolution, 2018, 35 (4): 823- 836.
doi: 10.1093/molbev/msx324 |
|
Song F, Li H, Liu G H, et al. Mitochondrial genome fragmentation unites the parasitic lice of Eutherian mammals. Systematic Biology, 2019, 68 (3): 430- 440.
doi: 10.1093/sysbio/syy062 |
|
Timmermans M J T N, Vogler A P. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Molecular Phylogenetics and Evolution, 2012, 63 (2): 299- 304.
doi: 10.1016/j.ympev.2011.12.021 |
|
Trifinopoulos J, Nguyen L T, von Haeseler A, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research, 2016, 44 (1): W232- W235.
doi: 10.1093/nar/gkv997 |
|
Vaidya G, Lohman D J, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 2011, 27 (2): 171- 180.
doi: 10.1111/j.1096-0031.2010.00329.x |
|
Weng X, Wang S, He H, et al. The complete mitochondrial genome of Phloeosinus perlatus Chapuis, 1875 (Coleoptera: Scolytinae). Mitochondrial DNA Part B: Resources, 2021, 6 (3): 1066- 1067.
doi: 10.1080/23802359.2021.1899082 |
|
Zhang S Q, Che L H, Li Y, et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications, 2018, 9 (1): 205.
doi: 10.1038/s41467-017-02644-4 |
|
Zhang S, Shu J, Wang Y, et al. The complete mitochondrial genomes of two sibling species of camellia weevils (Coleoptera: Curculionidae) and patterns of Curculionini speciation. Scientific Reports, 2019, 9 (1): 3412.
doi: 10.1038/s41598-019-39895-8 |
|
Zhang X, Zhang G, Hou Q. The complete mitogenome of Chlorophanus auripes Faust, 1897 (Coleoptera, Curculionidae). Mitochondrial DNA Part B, 2022, 7 (6): 1084- 1086.
doi: 10.1080/23802359.2022.2086495 |
|
Zhou Z, Huang Y, Shi F. The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 2007, 50 (9): 855- 866.
doi: 10.1139/G07-057 |
|
Zhu X, Xie X, Das H, et al. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization. Cell, 2022, 185 (13): 2309- 2323.
doi: 10.1016/j.cell.2022.05.006 |
[1] | 刘萌萌,刘明轩,牟玉杰,李泽建,魏美才. 危害柳树的小须突瓣叶蜂(膜翅目:叶蜂科)有效种名修订[J]. 林业科学, 2024, 60(6): 102-110. |
[2] | 耿显胜,舒金平,刘莹,刘军. 浙江省香椿溃疡病病原菌的分离和鉴定[J]. 林业科学, 2024, 60(5): 151-157. |
[3] | 杨忠岐,曹亮明,王小艺,刘慧慧,吴耀军,蒋学建,罗缉. 一种重要的桉树外来入侵害虫——桉树叶瘿球角姬小蜂(膜翅目:姬小蜂科)[J]. 林业科学, 2023, 59(8): 85-89. |
[4] | 牛耕耘,李东宾,谭贝贝,徐婧,魏美才. 危害云锦杜鹃的简脉茎蜂属一新种(膜翅目:茎蜂科)及系统学意义[J]. 林业科学, 2023, 59(3): 145-151. |
[5] | 李泽建,刘萌萌,牛耕耘,魏美才. 危害鹅掌楸的中国巨基叶蜂属(膜翅目: 叶蜂科)一新种[J]. 林业科学, 2022, 58(4): 104-109. |
[6] | 任利利,陶静,武海卫,宗世祥,王传珍,华德,石娟,刘漪舟,骆有庆. 重大害虫长林小蠹入侵我国的首次发现与侵染特征[J]. 林业科学, 2021, 57(5): 140-150. |
[7] | 王正,马晓乾,周勤政,郑桂恒,夏吾加,张艳明,王成立,晋鹏非,吕全,张星耀. 中国齿小蠹属昆虫的鉴定[J]. 林业科学, 2021, 57(12): 79-91. |
[8] | 樊婷婷, 高尚坤, 孟凡玲, 尹红增, 李超, 王庆华, 周成刚. 外来入侵新害虫刺槐突瓣细蛾在中国的适生区预测[J]. 林业科学, 2019, 55(6): 86-95. |
[9] | 杜会聪,王瑶,方加兴,张珍荫,张苏芳,刘福,张真,孔祥波. 马尾松毛虫线粒体全基因组的测定与分析[J]. 林业科学, 2019, 55(12): 162-172. |
[10] | 吴耀军 蒋学建 李德伟 罗基同 周国福 常明山 杨忠岐. 我国发现1种重要的林业外来入侵害虫——桉树枝瘿姬小蜂(膜翅目:姬小蜂科)[J]. 林业科学, 2009, 12(7): 161-163. |
[11] | 赵建兴. 杨忠岐 任晓红 梁小明. 红脂大小蠹的生物学特性及在我国的发生规律*[J]. 林业科学, 2008, 44(2): 99-105. |
[12] | 赵建兴;杨忠岐 梁廷杰. 利用捕食性天敌大唼蜡甲防治大小蠹属害虫的研究进展[J]. 林业科学, 2008, 44(1): 151-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||