欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (8): 79-94.doi: 10.11707/j.1001-7488.LYKX20220699

• 研究论文 • 上一篇    下一篇

基于耦合推断的时间外延性辅助数据偏倚修正——以森林蓄积量估计为例

梅安琪1,2,侯正阳1,2,*,徐晴3,4,陈芳婷1,2,齐元浩1,2,贾东瑾5   

  1. 1. 北京林业大学森林培育与保护教育部重点实验室 北京100083
    2. 国家林业和草原局黑龙江三江平原沼泽草甸生态系统定位观测研究站 双鸭山518000
    3. 国际竹藤中心竹藤资源与环境研究所 北京100102
    4. 国家林业和草原局/北京市共建竹藤科学与技术重点实验室 北京100102
    5. 西安绿环林业技术服务有限责任公司 西安710048
  • 收稿日期:2022-10-19 出版日期:2024-08-25 发布日期:2024-09-03
  • 通讯作者: 侯正阳
  • 基金资助:
    国家社会科学基金项目“森林生态系统碳汇监测核算体系构建与评价研究”(22BTJ005)

Rejuvenating the Shelf-Life of Outdated Model and Auxiliary Data for Remote Sensing-Assisted Forest Inventory:Taking Forest Volume as an Example

Anqi Mei1,2,Zhengyang Hou1,2,*,Qing Xu3,4,Fangting Chen1,2,Yuanhao Qi1,2,Dongjin Jia5   

  1. 1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University Beijing 100083
    2. Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration Shuangyashan 518000
    3. Institute of Resources and Environment, International Centre for Bamboo and Rattan Beijing 100102
    4. Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102
    5. Xi’an Lühuan Forestry Technical Service Limited Liability Company Xi’an 710048
  • Received:2022-10-19 Online:2024-08-25 Published:2024-09-03
  • Contact: Zhengyang Hou

摘要:

目的: 1) 量化“过期”模型对推断总体参数(总体均值、方差)的影响;2) 提出利用基于模型辅助的估计量修正模型保质期引起的推断偏倚;3) 评估度量误差模型对推断偏倚的修正作用。方法: 在基于设计、基于模型和基于模型辅助3种推断框架下,应用度量误差模型,修正“过期”模型对总体参数(总体均值、方差)的影响。结果: 1) 将二阶抽样的估计值作为参照,对比基于模型的统计推断估计值,无论是线性回归模型还是度量误差模型,其均值估计值与二阶抽样下总体均值估计值6.774 m3·hm?2接近,其方差估计值的平均值为0.117,远小于基于设计的方差估计值0.965,精度提升平均为87.93%;2) 遥感数据“过期”引起模型失效,对总体均值估计产生较大偏差,总体均值估计值的偏移程度随着遥感数据获取时间的推移加剧;3) 在基于模型辅助推断框架下,线性回归模型和度量误差模型的总体均值估计值均在6.5~6.8波动,波动范围较小,变化趋势相同,二者均值估计值差异较小,后者推断精度更高,精度提升范围为5.71%~22.50%,平均为13.34%。结论: 1) 遥感数据作为辅助信息可有效提高估计精度;2) 当遥感数据“过期”时模型失效,总体均值估计值偏倚增大,方差估计值被低估;3) 基于模型辅助的统计推断可解决模型“过期”造成的推断偏倚问题,保持估计量近似无偏性,且精度与概率样本的样本量呈正相关;4) 度量误差模型可降低总体方差估计值,但仅使用度量误差模型无法消除时间外延性遥感数据产生的推断偏倚。

关键词: 统计推断, 森林资源调查, 抽样设计, 遥感数据, “过期”模型

Abstract:

Objective: 1) To quantify the effects of the“outdated”models on the population parameter estimates. 2) To correct bias due to“outdated”model by model-assisted inference. 3) To quantify the correction effects of the errors-in-variable (EIV) model on the inferential bias. Method: Correcting for the effect of outdated models on estimates (the population mean, and the variance of the population mean) using EIV model under three inference frameworks: design-based inference, model-based inference, and model-assisted inference. Result: 1) Compare the estimates based on model-based inference with the estimates of two-stage sampling. The model-based estimates of the mean, $ \hat{\mu } $, including the regular model and the EIV model, were similar to each other and to the two-stage sampling estimate of the mean, 6.774 m3·hm?2. The design-based and the model-based estimates of $ \mathrm{\widehat{Var}}\left(\hat{\mu}\right) $ have great disparity, with two-stage sampling of 0.965 and model-based averaging 0.117, meaning that the average precision for model-based was improved by 87.93%. 2) The adverse effects of temporally external independent variables are exacerbated over time with respect to a model and propagate to the population parameter estimation. 3) In the model-assisted inference, the estimates of mean $ \hat{\mu } $, including the regular and the EIV models, range from 6.5 to 6.8, with a small fluctuation range and the same trend, and the differences between the mean estimates of the two are small, but the latter has higher inference accuracy, with an accuracy improvement range of 5.71%?22.50%, with an average of 13.34%. Conclusion: 1) Remotely sensed data as auxiliary information can effectively improve the estimation accuracy. 2) When remote sensing data are“out of date”, the model is invaild, the mean estimate bias increases, and the variance estimate is underestimated. 3) Model-assisted inference solves the problem of inference bias caused by“outdated”model, maintains the approximate unbiasedness of the estimates, and the accuracy is positively correlated with the sample size of the probability sample. 4) EIV model reduces the variance estimates, but the adverse effects of the“outdated”model cannot be eliminated by using the EIV model alone.

Key words: statistical inference, forest inventory, sampling design, remotely sensed auxiliary data, “outdated”model

中图分类号: