|
葛省波. 2020. 竹纤维干法嵌合机理研究. 长沙: 中南林业科技大学.
|
|
Ge S B. 2020. The mechanism research on dry mosaicism of bamboo fiber. Changsha: Central South University of Forestry & Technology. [in Chinese]
|
|
耿 绍, 张伟风, 罗浪漫, 等. 双醛改性纤维素纳米纤丝增强木质素水凝胶及其耐温耐盐性能研究. 中国造纸学报, 2022, 37 (1): 29- 35.
|
|
Geng S, Zhang W F, Luo L M, et al. Study on lignin hydrogel reinforced by dialdehyde-modified cellulose nanofibril and its temperature and salt tolerance. Transactions of China Pulp and Paper, 2022, 37 (1): 29- 35.
|
|
郭明辉, 关 鑫, 李 坚. 2010. 中国木质林产品的碳储存与碳排放. 中国人口·资源与环境, 20(S2): 19−21.
|
|
Guo M H, Guan X, Li J. 2010. Carbon storage and carbon emission of wood forest products in China. China Population, Resources and Environment, 20(S2): 19−21. [in Chinese]
|
|
姬云忠. 2021. 纤维素基活性包装材料的制备及性能研究. 济南: 齐鲁工业大学.
|
|
Ji Y Z. 2021. Preparation and properties of cellulose based active packaging materials. Jinan: Qilu University of Technology. [in Chinese]
|
|
金春德. 2002. 无胶人造板制造工艺的研究. 哈尔滨: 东北林业大学.
|
|
Jin C D. 2002. Study on processes of self-bonding composites. Harbin: Northeast Forestry University. [in Chinese]
|
|
劳万里, 段新芳, 吕 斌, 等. 碳达峰碳中和目标下木材工业的发展路径分析. 木材科学与技术, 2022, 36 (1): 87- 91.
|
|
Lao W L, Duan X F, Lü B, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality. Chinese Journal of Wood Science and Technology, 2022, 36 (1): 87- 91.
|
|
王宝玉, 李 荣, 曾锦豪, 等. 高碘酸盐氧化纤维素与双醛纤维素衍生反应及应用研究进展. 合成材料老化与应用, 2020, 49 (4): 127- 130.
|
|
Wang B Y, Li R, Zeng J H, et al. Research progress in derivative reaction of dialdehyde celluloseand its application. Synthetic Materials Aging and Application, 2020, 49 (4): 127- 130.
|
|
王琴梅, 廖燕红, 滕 伟, 等. 盐酸羟胺-电位滴定法测定氧化海藻酸钠上的醛基浓度. 分析试验室, 2008, 27 (S1): 83- 86.
|
|
Wang Q M, Liao Y H, Teng W, et al. Determination of aldehyde group concentration on oxidized sodium alginate by hydroxylamine hydrochloride-potentiometric titration. Chinese Journal of Analysis Laboratory, 2008, 27 (S1): 83- 86.
|
|
王 雄, 彭文垚, 王 鹏. 双醛纤维素的制备及其对纸张强度的增强. 包装工程, 2021, 42 (23): 8- 14.
|
|
Wang X, Peng W Y, Wang P. Preparation of dialdehyde cellulose and its enhancement effects on paper strength. Packaging Engineering, 2021, 42 (23): 8- 14.
|
|
伍艳梅, 吕 斌. 我国人造板产品发展现状及建议. 中国人造板, 2020, 27 (4): 7- 11.
|
|
Wu Y M, Lü B. Analysis on present development status and future prospect of wood-based panels in China. China Wood-Based Panels, 2020, 27 (4): 7- 11.
|
|
张 林, 朱 平, 徐江涛, 等. 人发角蛋白液整理氧化棉织物的工艺研究. 纤维素科学与技术, 2015, 23 (3): 36- 42.
|
|
Zhang L, Zhu P, Xu J T, et al. Research of oxidized cotton fabric modified by human hair keratin solution. Journal of Cellulose Science and Technology, 2015, 23 (3): 36- 42.
|
|
赵保成, 姜志华, 王素鹏, 等. 木质素无醛胶黏剂在实木复合地板生产中研究与应用. 中国人造板, 2021, 28 (1): 3- 6.
|
|
Zhao B C, Jiang Z H, Wang S P, et al. Technology and application of lignin based formaldehyde-free adhesive for engineered wood flooring. China Wood-Based Panels, 2021, 28 (1): 3- 6.
|
|
郑 霞. 2012. 非木材植物无胶碎料板喷蒸热压工艺及胶合机理研究. 长沙: 中南林业科技大学.
|
|
Zheng X. 2012. Research on steam-injection hot-pressing technology and bonding mechanism of non-wood plant binderless particleboard. Changsha: Central South University of Forestry and Technology. [in Chinese]
|
|
Abboud M, Bondock S, El-Zahhar A A, et al. Synthesis and characterization of dialdehyde cellulose/amino functionalized MCM-41 core-shell microspheres as a new eco-friendly flame-retardant nanocomposite. Journal of Applied Polymer Science, 2021, 138 (15): 50215.
doi: 10.1002/app.50215
|
|
Chen B, Leiste U H, Fourney W L, et al. Hardened wood as a renewable alternative to steel and plastic. Matter, 2021, 4 (12): 3941- 3952.
doi: 10.1016/j.matt.2021.09.020
|
|
Cui D L, Liu Z H, Yang Y X, et al. Adsorption performance of creatinine on dialdehyde nanofibrillated cellulose derived from potato residues. Biotechnology Progress, 2016, 32 (1): 208- 214.
doi: 10.1002/btpr.2177
|
|
El-Sakhawy, Kamel S, Salama A, et al. Amphiphilic cellulose as stabilizer for oil/water emulsion. Egyptian Journal of Chemistry, 2017, 60 (2): 181- 204.
doi: 10.21608/ejchem.2017.544.1002
|
|
Esen E R, Meier M A R. Sustainable functionalization of 2, 3-dialdehyde cellulose via the passerini three-component reaction. ACS Sustainable Chemistry & Engineering, 2020, 8 (41): 15755- 15760.
|
|
Gong X Y, Liu T L, Yu S S, et al. The preparation and performance of a novel lignin-based adhesive without formaldehyde. Industrial Crops and Products, 2020, 153 (1): 112593- 112604.
|
|
Hashim R, Saari N, Sulaiman O, et al. Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Materials & Design, 2010, 31 (9): 4251- 4257.
|
|
Hashim R, Wan Nadhari W N A, Sulaiman O, et al. Properties of binderless particleboard panels manufactured from oil palm biomass. BioResources, 2012, 7 (1): 1352- 1365.
doi: 10.15376/biores.7.1.1352-1365
|
|
Keshk S, Zahhar A A, Al-sehemi A G, et al. 2018. Synthesis and characterization of magnetic nanoparticles/dialdehyde cellulose composite as a flame retardant. Materials Research Express, 6(2): 101−123.
|
|
Kim U J, Kimura S, Wada M. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam. Carbohydrate Polymers, 2019, 214, 294- 302.
doi: 10.1016/j.carbpol.2019.03.058
|
|
Kim U J, Kuga S, Wada M, et al. Periodate oxidation of crystalline cellulose. Biomacromolecules, 2000, 1 (3): 488- 492.
doi: 10.1021/bm0000337
|
|
Kurokochi Y, Sato M. Properties of binderless board made from rice straw: the morphological effect of particles. Industrial Crops and Products, 2015, 69, 55- 59.
doi: 10.1016/j.indcrop.2015.01.044
|
|
Lei B, Feng Y H. Sustainable thermoplastic bio-based materials from sisal fibers. Journal of Cleaner Production, 2020a, 265, 121631.
doi: 10.1016/j.jclepro.2020.121631
|
|
Lei Z H, Gao W H, Zeng J S, et al. The mechanism of Cu (II) adsorption onto 2, 3-dialdehyde nano-fibrillated celluloses. Carbohydrate Polymers, 2020b, 230, 115631.
doi: 10.1016/j.carbpol.2019.115631
|
|
Lou J F, Zhang J F, Wang D, et al. Improving the dyeability and anti-wrinkle properties of cotton fabric via oxidized raffinose. Applied Sciences, 2021, 11 (10): 4641- 4654.
doi: 10.3390/app11104641
|
|
Mou K W, Li J J, Wang Y Y, et al. 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. Journal of Materials Chemistry B, 2017, 5 (38): 7876- 7884.
doi: 10.1039/C7TB01857F
|
|
Murigi M K, Madivoli E S , Mathenyu M M, et al. 2014. Comparison of physicochemical characteristics of microcrystalline cellulose from four abundant Kenyan biomasses. IOSR Journal of Polymer and Textile Engineering, 1(2): 53−63.
|
|
Poletto M, Zattera A J, Forte M M C, et al. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 2012, 109, 148- 153.
doi: 10.1016/j.biortech.2011.11.122
|
|
Simon J, Tsetsgee O, Iqbal N A, et al. A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydrate Polymers, 2022, 278 (40): 118887- 118895.
|
|
Sirvio J, Hyvakko U, Liimatainen H, et al. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydrate Polymers, 2011, 83 (3): 1293- 1297.
doi: 10.1016/j.carbpol.2010.09.036
|
|
Thiangtham S, Runt J, Manuspiya H. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydrate Polymers, 2019, 208, 314- 322.
doi: 10.1016/j.carbpol.2018.12.080
|
|
Tupciauskas R, Irbe I, Janberga A, et al. Moisture and decay resistance and reaction to fire properties of self-binding fibreboard made from steam-exploded grey alder wood. Wood Material Science & Engineering, 2015, 12 (1/5): 63- 71.
|
|
Usman M A, Naeem M, Saeed M, et al. Catalytic C—O bond cleavage in a β—O—4 lignin model through intermolecular hydrogen transfer. Inorganica Chimica Acta, 2021, 521, 120305.
doi: 10.1016/j.ica.2021.120305
|
|
Varavinit S, Chaokasem N, Shobsngob S. Covalent immobilization of a glucoamylase to bagasse dialdehyde cellulose. World Journal of Microbiology and Biotechnology, 2001, 17 (7): 721- 725.
doi: 10.1023/A:1012984802624
|
|
Wan N A W A, NadhariaNor S I, Mohammed Danish, et al. Mechanical and physical properties of binderless particleboard made from oil palm empty fruit bunch (OPEFB) with addition of natural binder. Materials Today: Proceedings, 2020, 31 (1): 287- 291.
|
|
Wang J, Zhang W G, Zhuang X W. Bonding mechanism of bamboo particleboards made by laccase treatment. Journal of Renewable Materials, 2021, 9 (3): 557- 568.
doi: 10.32604/jrm.2021.013269
|
|
Yang L, Wang C F, Chen L P, et al. Effect of aldehydes crosslinkers on properties of bacterial cellulose-poly(vinyl alcohol) (BC/PVA) nanocomposite hydrogels. Fibers and Polymers, 2017, 18 (1): 33- 40.
doi: 10.1007/s12221-017-6873-9
|
|
Ye H R, Wang Y, Yu Q H, et al. 2022. Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere, 287(Pt 4): 132436−132445.
|
|
Zhang H, Liu P W, Musa S M, et al. Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10452- 10459.
|