|
程浙安. 2019. 基于深度卷积神经网络的内蒙古地区陆生野生动物自动识别. 北京: 北京林业大学.
|
|
Cheng Z A.2019. Automatic recognition of terrestrial wildlife in inner mongolia based on deep convolution neural network.Beijing:Beijing Foresty University. [in Chinese]
|
|
李安琪. 2020. 基于卷积神经网络的野生动物监测图像自动识别方法研究. 北京: 北京林业大学.
|
|
Li A Q. 2020.Research on automatic recognition method of wildlife monitoring images based on convolutional neural network.Beijing: Beijing Forestry University.[in Chinese]
|
|
齐建东, 马鐘添, 张德怀, 等. 基于BS-ResNeXt-50的密云地区野生动物图像识别. 林业科学, 2023, 59 (8): 112- 122.
doi: 10.11707/j.1001-7488.LYKX20220378
|
|
Qi J D, Ma Z T, Zhang D H, et al. Wildlife image recognition in Miyun District based on BS-ResNeXt-50. Scientia Silvae Sinicae, 2023, 59 (8): 112- 122.
doi: 10.11707/j.1001-7488.LYKX20220378
|
|
谢 斌, 汪 宁, 范有伟. 相关对齐的总变分风格迁移新模型. 中国图象图形学报, 2020, 25 (2): 241- 254.
|
|
Xie B, Wang N, Fan Y W. Correlation alignment total variation model and algorithm for style transfer. Journal of Image and Graphics, 2020, 25 (2): 241- 254.
|
|
Chen P, Zhao R, He T, et al. Unsupervised domain adaptation of bearing fault diagnosis based on join sliced Wasserstein distance. ISA transactions, 2022, 129, 504- 519.
doi: 10.1016/j.isatra.2021.12.037
|
|
Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 2016, 17 (1): 2096- 2030.
|
|
He K, Zhang X, Ren S, et al. 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770−778.
|
|
Long M, Cao Y, Cao Z, et al. Transferable representation learning with deep adaptation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (12): 3071- 3085.
doi: 10.1109/TPAMI.2018.2868685
|
|
Long M, Cao Z, Wang J, et al. 2018. Conditional adversarial domain adaptation. Advances in Neural Information Processing Systems, 31.
|
|
Miao Z, Liu Z, Gaynor K M, et al. Iterative human and automated identification of wildlife images. Nature Machine Intelligence, 2021, 3 (10): 885- 895.
doi: 10.1038/s42256-021-00393-0
|
|
Norouzzadeh M S, Nguyen A, Kosmala M., et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 2018, 115 (25): E5716- E5725.
|
|
Oza P, Sindagi V A, Sharmini V V, et al. 2023. Unsupervised domain adaptation of object detectors: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1−24.
|
|
Peng S, Zeng R, Cao L, et al. Multi-source domain adaptation method for textual emotion classification using deep and broad learning. Knowledge-Based Systems, 2023, 260, 110173.
doi: 10.1016/j.knosys.2022.110173
|
|
Petso T, Jamisola R S, Mpoeleng D. Review on methods used for wildlife species and individual identification. European Journal of Wildlife Research, 2022, 68, 1- 18.
doi: 10.1007/s10344-021-01555-6
|
|
Roy A M, Bhaduri J, Kumar T, et al. WilDect-YOLO: an efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection. Ecological Informatics, 2023, 75, 101919.
doi: 10.1016/j.ecoinf.2022.101919
|
|
Sun B, Saenko K. 2016. Deep coral: Correlation alignment for deep domain adaptation. European Conference on Computer Vision, 443-450.
|
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations.
|
|
Tuia D, Kellenberger B, Beery S. et al. Perspectives in machine learning for wildlife conservation. Nature Communication, 2022, 13 (1): 1- 15.
doi: 10.1038/s41467-021-27699-2
|
|
Tzeng E, Hoffman J, Zhang N, et al. 2014. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv: 1412.3474.
|
|
Tabak M A, Norouzzadeh M S, Wolfson D W, et al. Machine learning to classify animal species in camera trap images: Applications in ecology. Methods in Ecology and Evolution, 2019, 10, 585- 590.
doi: 10.1111/2041-210X.13120
|
|
Thangaraj R, Rajendar S, Sanjith M, et al. 2023. Automated recognition of wild animal species in camera trap images using deep learning models. International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, 1−5.
|
|
Wang X, Li P, Zhu C, 2020. Classification of wildlife based on transfer learning. International Conference on Video and Image Processing, 236−240.
|
|
Wang S, Wang B, Zhang Z, et al. Class-aware sample reweighting optimal transport for multi-source domain adaptation. Neurocomputing, 2023, 523, 213- 223.
doi: 10.1016/j.neucom.2022.12.048
|
|
Yang D Q, Ren G P, Tan K, et al. An adaptive automatic approach to filtering empty images from camera traps using a deep learning model. Wildlife Society Bulletin, 2021, 45, 230- 236.
doi: 10.1002/wsb.1176
|
|
Yin Y, Yang Z, Hu H, et al. Universal multi-Source domain adaptation for image classification. Pattern Recognition, 2022, 121, 108238.
doi: 10.1016/j.patcog.2021.108238
|
|
Yousif H, Kays R, He Z. 2019. Dynamic programming selection of object proposals for sequence-level animal species classification in the wild. IEEE Transactions on Circuits and Systems for Video Technology, 20.
|
|
Zhang C, Zhao Q, Wu H. Deep domain adaptation via joint transfer networks. Neurocomputing, 2022, 489, 441- 448.
doi: 10.1016/j.neucom.2022.03.028
|
|
Zhang C, Zhao Q, Wang Y. Hybrid adversarial network for unsupervised domain adaptation. Information Sciences, 2020, 514, 44- 55.
doi: 10.1016/j.ins.2019.12.005
|
|
Zhang C, Zhang J. DJAN: Deep joint adaptation network for wildlife image recognition. Animals, 2023, 13, 3333.
doi: 10.3390/ani13213333
|