林业科学 ›› 2024, Vol. 60 ›› Issue (11): 25-36.doi: 10.11707/j.1001-7488.LYKX20240004
刘相荣1,2(),孙启武1,2,厚凌宇1,2,庞忠义3,张琰琳1,2,丁昌俊1,2,*
收稿日期:
2024-01-02
出版日期:
2024-11-25
发布日期:
2024-11-30
通讯作者:
丁昌俊
E-mail:lxr20210822@163.com
基金资助:
Xiangrong Liu1,2(),Qiwu Sun1,2,Lingyu Hou1,2,Zhongyi Pang3,Yanlin Zhang1,2,Changjun Ding1,2,*
Received:
2024-01-02
Online:
2024-11-25
Published:
2024-11-30
Contact:
Changjun Ding
E-mail:lxr20210822@163.com
摘要:
目的: 探究杨树人工林林龄变化对土壤微生物群落结构和功能群特征的影响,为杨树人工林的地力维护和可持续经营提供科学依据。方法: 以辽宁省新民市2、4、7、10和14年生欧美杨I-214杨人工林为研究对象,测定0~20 cm土层土壤理化性质,利用高通量测序技术分析不同林龄I-214杨人工林土壤细菌和真菌群落结构及其功能多样性差异。结果: 土壤有机碳、硝态氮、速效钾和有效磷含量均随林龄增长呈先降后升的变化趋势。土壤优势细菌门为变形菌门和酸杆菌门,其中变形菌门的相对丰度随林龄增长而增加;优势真菌门为子囊菌门和担子菌门,相对丰度几乎不受林龄影响。土壤细菌香农指数随林龄增长呈先降后升的变化趋势,在林龄2年时最高。冗余分析表明,土壤密度、pH和速效钾、有效磷含量显著影响土壤细菌群落,土壤全氮和硝态氮含量显著影响土壤真菌群落;土壤微生物群落功能预测表明,具有碳和氮转化功能的细菌群落相对丰度随林龄增长而增大,且土壤细菌香农指数、碳转化功能群落相对丰度以及土壤硝态氮、速效钾、有效磷养分含量均在林龄 10 年时开始呈现出明显降低趋势。结论: 松辽平原区 I-214 杨人工林土壤细菌群落较真菌群落更易受林龄影响,林龄10年时为关键转折点,土壤细菌群落多样性、碳转化功能群相对丰度以及部分养分含量下降,需考虑采取适宜经营措施,以维持土壤肥力以及微生物群落结构和功能多样性。
中图分类号:
刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36.
Xiangrong Liu,Qiwu Sun,Lingyu Hou,Zhongyi Pang,Yanlin Zhang,Changjun Ding. The Differences in Soil Microbial Community Structure and Functional Diversity among Poplar Plantations at Different Ages in the Songliao Plain[J]. Scientia Silvae Sinicae, 2024, 60(11): 25-36.
表1
试验林基本情况"
林龄 Age/a | 海拔 Altitude/m | 树高 Tree height/m | 胸径 DBH/cm | 株行距 Plant-row spacing/ m×m | 郁闭度 Canopy density |
2 | 32 | 5.1±0.38 | 6.2±0.15 | 2×6 | 0.6±0.02 |
4 | 45 | 7.1±0.06 | 12.7±0.17 | 2×6 | 0.6±0.02 |
7 | 37 | 12.0±0.06 | 21.5±0.42 | 1~4 a:2×6 5~7 a:4×6 | 0.7±0.02 |
10 | 41 | 20.1±0.15 | 25.0±0.93 | 1~4 a:2×6 5~10 a:4×6 | 0.7±0.02 |
14 | 37 | 22.0±0.15 | 30.7±0.49 | 1~4 a:2×6 5~14 a:4×6 | 0.8±0.01 |
图6
不同林龄杨树人工林土壤细菌(A、C)和真菌(B、D)群落与土壤理化性质的相关分析和RDA分析 SBD:土壤密度 Soilbulk density;SOC:土壤有机碳 Soil organic carbon;TN:全氮 Total nitrogen;NO3?-N:硝态氮 Nitrate nitrogen;NH4+-N:铵态氮 Ammoniacal nitrogen;AK:速效钾 Available potassium;AP:有效磷 Available phosphorus;C∶N:土壤碳氮比 Soil C∶N。*表示在 0.05 水平上差异显著;**表示在 0.01 水平上差异显著;***表示在0.001水平上差异显著。*indicates a significant difference at the 0.05 level; ** indicates a significant difference at the 0.01 level; *** indicates a significant difference at the 0.001 level."
表2
从FAPROTAX数据库中鉴定的不同林龄杨树人工林土壤细菌群①"
林龄 Stand age/a | 氮转化细菌群 Nitrogen-transformation bacteriome | 碳转化细菌群 Carbon-transformation bacteriome | ||||
固氮作用 Nitrogen fixation | 硝酸盐还原作用 Nitrate reduction | 光养作用 Phototrophy | 光自养作用 Photoautotrophy | 含氧光自养作用 Oxygenic photoautotrophy | ||
2 | 2.24±0.19d | 2.42±0.61a | 0.79±0.17a | 0.68±0.21a | 0.50±0.13ab | |
4 | 2.92±0.33bc | 2.33±0.73a | 0.79±0.24a | 0.70±0.19a | 0.53±0.22ab | |
7 | 2.51±0.32cd | 2.30±0.25a | 1.05±0.47a | 0.99±0.44a | 0.86±0.38a | |
10 | 3.04±0.04b | 2.28±0.51a | 0.58±0.17a | 0.43±0.16a | 0.25±0.13b | |
14 | 4.35±0.19a | 1.05±0.45b | 1.19±0.38a | 1.03±0.45a | 0.95±0.41a |
表3
从FUNGuild数据库中鉴定的不同林龄杨树人工林土壤真菌群"
林龄 Stand age/a | 腐生营养型 Saprotroph | 病理营养型 Pathotroph | |||
未定义的腐生菌 Undefined saprotroph | 排泄物腐生菌 Dung saprotroph | 植物病原菌 Plant pathogen | 真菌寄生菌 Fungal parasite | ||
2 | 47.51±2.91a | 6.15±1.13a | 16.79±1.92ab | 3.92±0.22a | |
4 | 48.35±4.64a | 4.88±1.41a | 21.35±7.12a | 3.24±0.19a | |
7 | 48.49±1.77a | 6.01±0.51a | 15.58±0.96ab | 3.32±0.68a | |
10 | 36.46±12.27a | 5.13±2.65a | 12.21±2.78b | 12.26±10.67a | |
14 | 43.84±3.36a | 5.40±1.22a | 19.40±3.94ab | 5.18±0.76a |
安 然, 龚吉蕊, 尤 鑫, 等. 不同龄级速生杨人工林土壤微生物数量与养分动态变化. 植物生态学报, 2011, 35 (4): 389- 401.
doi: 10.3724/SP.J.1258.2011.00389 |
|
An R, Gong J R, You X, et al. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China. Chinese Journal of Plant Ecology, 2011, 35 (4): 389- 401.
doi: 10.3724/SP.J.1258.2011.00389 |
|
曹 娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征. 林业科学, 2015, 51 (7): 1- 8. | |
Cao J, Yan W D, Xiang W H, et al. Stoichiometry characterization of soil C, N, and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China. Scientia Silvae Sinicae, 2015, 51 (7): 1- 8. | |
陈彦云, 夏皖豫, 赵 辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响. 生态学报, 2022, 42 (12): 5009- 5021. | |
Chen Y Y, Xia W Y, Zhao H, et al. Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land. Acta Ecologica Sinca, 2022, 42 (12): 5009- 5021. | |
丛 微, 于晶晶, 喻海茫, 等. 不同气候带森林土壤微生物多样性和群落构建特征. 林业科学, 2022, 58 (2): 70- 79. | |
Cong W, Yu J J, Yu H M, et al. Diversity and community assembly of forest soil microorganisms in different climatic zones. Scientia Silvae Sinicae, 2022, 58 (2): 70- 79. | |
高永健, 袁玉欣, 刘四维, 等. 不同林龄杨树人工林对土壤微生物状况和酶活性的影响. 中国农学通报, 2007, 23 (7): 185- 189. | |
Gao Y J, Yuan Y X, Liu S W, et al. The effects of different stand ages on microbe populations and enzyme activities. Chinese Agricultural Science Bulletin, 2007, 23 (7): 185- 189. | |
刘可意, 杨 佳, 姜淑娜, 等. 基于最小数据集的典型黑土区不同林龄小黑杨土壤质量差异. 生态学报, 2024, 44 (9): 3623- 3635. | |
Liu K Y, Yang J, Jiang S N, et al. Evaluation of differences in soil quality of Populus simonii × P. nigra (P. xiaohei) of different stand ages in typical black soil areas based on a minimum data set. Acta Ecologica Sinca, 2024, 44 (9): 3623- 3635. | |
刘 丽, 段争虎, 汪思龙, 等. 不同发育阶段杉木人工林对土壤微生物群落结构的影响. 生态学杂志, 2009, (12): 2417- 2423. | |
Liu L, Duan Z H, Wang S L, et al. Effects of Cunninghamia lanceolata plantations at different developmental stages on soil microbial community structure. Chinese Journal of Ecology, 2009, (12): 2417- 2423. | |
孙 艳, 王益权, 刘 军, 等. 日光温室蔬菜栽培对土壤物理质量的影响. 应用生态学报, 2011, 22 (8): 2054- 2060. | |
Sun Y, Wang Y Q, Liu J, et al. Effects of solar greenhouse vegetable cultivation on soil physical quality. Chinese Journal of Applied Ecology, 2011, 22 (8): 2054- 2060. | |
孙宇璇, 曾 涛, 陈双丹, 等. 彭州市不同土地利用方式下土壤小型分解者群落的结构和功能. 生态学报, 2024, 44 (13): 5567- 5582. | |
Sun Y X, Zeng T, Chen S D, et al. The community structure and function of soil micro-decomposers under different land use types in Pengzhou City. Acta Ecologica Sinica, 2024, 44 (13): 5567- 5582. | |
王宏星, 孙晓梅, 陈东升, 等. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响. 林业科学, 2023, 59 (6): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220508 |
|
Wang H X, Sun X M, Chen D S, et al. Effects of moderate thinning on biological diversity and soil multifunctionality in Larix kaempferi plantations. Scientia Silvae Sinicae, 2023, 59 (6): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220508 |
|
王树力, 孙 悦, 沈海燕, 等. 不同密度杂种落叶松人工林的土壤微生物变化特征. 中国水土保持科学, 2009, 7 (3): 59- 66.
doi: 10.3969/j.issn.1672-3007.2009.03.011 |
|
Wang S L, Sun Y, Shen H Y, et al. Changes of soil microbiological properties of Larix olgensis + Larix kaempferi plantation with the different densities. Science of Soil and Water Conservation, 2009, 7 (3): 59- 66.
doi: 10.3969/j.issn.1672-3007.2009.03.011 |
|
姚 拓, 龙瑞军, 王 刚, 等. 兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究. 土壤学报, 2004, 41 (3): 444- 448.
doi: 10.3321/j.issn:0564-3929.2004.03.018 |
|
Yao T, Long R J, Wang G, et al. Isolation and characteristics of associative symbiotic nitrogen bacteria from rhizosphere of wheat in saline soil in Lanzhou area. Acta Pedologica Sinica, 2004, 41 (3): 444- 448.
doi: 10.3321/j.issn:0564-3929.2004.03.018 |
|
张 瑛, 马雪松, 敬如岩, 等. 基于宏基因组测序技术分析连作对杨树人工林土壤微生物群落的影响. 山东大学学报(理学版), 2019, 54 (1): 36- 46. | |
Zhang Y, Ma X S, Jing R Y, et al. Effects of successive-planting poplar plantation on soil microbial community. Journal of Shandong University (Natural Science), 2019, 54 (1): 36- 46. | |
张雅茜, 方 晰, 冼应男, 等. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征. 生态学报, 2019, 39 (14): 5326- 5338. | |
Zhang Y Q, Fang X, Xian Y N, et al. Characteristics of soil microbial biomass carbon, nitrogen, phosphorus and enzyme activity in four subtropical forests, China. Acta Ecologica Sinica, 2019, 39 (14): 5326- 5338. | |
赵伟红, 康峰峰, 韩海荣, 等. 冀北辽河源地区不同林龄山杨天然次生林土壤理化特征的研究. 中南林业科技大学学报, 2016, 36 (1): 52- 57. | |
Zhao W H, Kang F F, Han H R, et al. Study on soil physical and chemical properties of Populus davidiana natural secondary forests with various tree-ages in Liaoheyuan Natural Reserve of northern Hebei Province. Journal of Central South University of Forestry and Technology, 2016, 36 (1): 52- 57. | |
Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233- 237.
doi: 10.1038/s41586-018-0386-6 |
|
Barka E A, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80 (1): 1- 43.
doi: 10.1128/MMBR.00019-15 |
|
Brown S P, Jumpponen A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Molecular Ecology, 2014, 23 (2): 481- 497.
doi: 10.1111/mec.12487 |
|
Cairney J W G. Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research, 2005, 109 (1): 7- 20.
doi: 10.1017/S0953756204001753 |
|
Chen F L, Zheng H, Zhang K, et al. Changes in soil microbial community structure and metabolic activity following conversion from native Pinus massoniana plantations to exotic Eucalyptus plantations. Forest Ecology and Management, 2013, 291, 65- 72.
doi: 10.1016/j.foreco.2012.11.016 |
|
Chen L F, He Z B, Wu X R, et al. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Applied Soil Ecology, 2021, 161, 103882.
doi: 10.1016/j.apsoil.2021.103882 |
|
Dang P, Yu X, Le H, et al. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS One, 2017, 12 (10): e0186501.
doi: 10.1371/journal.pone.0186501 |
|
Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil. Science, 2018, 359 (6373): 320- 325.
doi: 10.1126/science.aap9516 |
|
Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (3): 626- 631. | |
Gibbons S M. Microbial community ecology: function over phylogeny. Nature Ecology & Evolution, 2017, 1 (1): 32. | |
Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 2002, 34 (9): 1299- 1307.
doi: 10.1016/S0038-0717(02)00073-1 |
|
Jat H S, Choudhary M, Datta A, et al. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil and Tillage Research, 2020, 199, 104595.
doi: 10.1016/j.still.2020.104595 |
|
Paungfoo-Lonhienne C, Yeoh Y K, Kasinadhuni N R P, et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 2015, 5, 8678.
doi: 10.1038/srep08678 |
|
Peco B, Navarro E, Carmona C P, et al. 2017. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems & Environment, 249: 215–225. | |
Rezapour S. Response of some soil attributes to different land use types in calcareous soils with Mediterranean type climate in north-west of Iran. Environmental Earth Sciences, 2014, 71 (5): 2199- 2210.
doi: 10.1007/s12665-013-2625-3 |
|
Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 2006, 287 (1): 15- 21. | |
Rodríguez-Soalleiro R, Eimil-Fraga C, Gómez-García E, et al. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. Forest Ecosystems, 2018, 5, 35.
doi: 10.1186/s40663-018-0154-y |
|
Romaniuk R, Giuffré L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecological Indicators, 2011, 11 (5): 1345- 1353.
doi: 10.1016/j.ecolind.2011.02.008 |
|
Shi X Z, Wang J Q, Lucas-Borja M E, et al. Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. Journal of Applied Ecology, 2021, 58 (12): 2833- 2842.
doi: 10.1111/1365-2664.14015 |
|
Springob G, Kirchmann H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry, 2003, 35 (4): 629- 632.
doi: 10.1016/S0038-0717(03)00052-X |
|
Tedersoo L, Bahram M, Põlme S, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science, 2014, 346 (6213): 1256688.
doi: 10.1126/science.1256688 |
|
Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98 (1): 139- 151. | |
van der Putten W H, Bardgett R D, Bever J D, et al. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101 (2): 265- 276.
doi: 10.1111/1365-2745.12054 |
|
Větrovský T, Steffen K T, Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One, 2014, 9 (2): e89108.
doi: 10.1371/journal.pone.0089108 |
|
Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 2014, 111 (14): 5266- 5270.
doi: 10.1073/pnas.1320054111 |
|
Wang C Q, Xue L, Dong Y H, et al. Effects of stand density on soil microbial community composition and enzyme activities in subtropical Cunninghamia lanceolate (Lamb. ) Hook plantations. Forest Ecology and Management, 2021, 479, 118559.
doi: 10.1016/j.foreco.2020.118559 |
|
Wang S, Adhikari K, Wang Q B, et al. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C: N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 2018, 84, 263- 272.
doi: 10.1016/j.ecolind.2017.08.046 |
|
Wu N, Li Z, Meng S, et al. Soil properties and microbial community in the rhizosphere of Populus alba var. pyramidalis along a chronosequence. Microbiological Research, 2021, 250, 126812.
doi: 10.1016/j.micres.2021.126812 |
|
Wu Z X, Hao Z P, Sun Y Q, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Applied Soil Ecology, 2016, 107, 99- 107.
doi: 10.1016/j.apsoil.2016.05.017 |
|
Yang Q, Lei A P, Li F L, et al. Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China. Marine Pollution Bulletin, 2014, 85 (2): 754- 763.
doi: 10.1016/j.marpolbul.2014.02.024 |
|
Zhang Y Q, Ai J J, Sun Q W, et al. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. CATENA, 2021, 196, 104872.
doi: 10.1016/j.catena.2020.104872 |
[1] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[2] | 竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32. |
[3] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[4] | 杨润露,王娟,张春雨. 东北天然次生针阔混交林乔木层碳储量变化的采伐干扰响应[J]. 林业科学, 2024, 60(7): 17-27. |
[5] | 薛亚东,孙戈,李佳,德力格尔其木格·达瓦苏仁,阿木古郎·洛布桑金巴,李广良,秦爱丽,金崑,肖文发. 蒙古国大戈壁保护区A区戈壁棕熊及同域分布动物多样性和分布格局[J]. 林业科学, 2024, 60(7): 95-104. |
[6] | 祝琳,聂立水,史策,黄梦遥,牛鑫,张润哲,张兆德,魏一凡,王登芝,杨昊,聂浩亮,王江,薄慧娟. 北京松山林地nirK型反硝化微生物群落立地及林型效应[J]. 林业科学, 2024, 60(5): 139-150. |
[7] | 韩新生,许浩,蔡进军,董立国,郭永忠,王月玲,万海霞,安钰. 宁夏黄土区稀疏带状山杏人工林土壤湿度动态与影响因素[J]. 林业科学, 2024, 60(4): 79-90. |
[8] | 肖欢,叶尔江·拜克吐尔汗,张春雨,赵秀海. 长白山阔叶红松林林层群落结构与生产力的关系[J]. 林业科学, 2024, 60(3): 57-64. |
[9] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[10] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[11] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[12] | 周方,蒋科毅,叶兰华,沈庆华,童冉,朱念福,苗永朝,吴统贵. 百山祖国家公园人工林土壤磷素有效性及其影响因素[J]. 林业科学, 2024, 60(11): 37-47. |
[13] | 杨豆,刘超华,李凤巧,唐罗忠,田野,方升佐,李孝刚. 苏北平原2个密度杨树人工林土壤团聚体及固碳差异[J]. 林业科学, 2024, 60(10): 21-28. |
[14] | 谢宪,邓勋,宋丽文,梁军. 落叶松枯梢病罹病叶及病梢真菌多样性[J]. 林业科学, 2024, 60(10): 76-85. |
[15] | 张俊红,王洋,周生财,吴小林,吴仁超,杨琪,张毓婷,童再康. 闽楠群体遗传结构分析与核心种质库构建[J]. 林业科学, 2024, 60(1): 68-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||