林业科学 ›› 2024, Vol. 60 ›› Issue (5): 139-150.doi: 10.11707/j.1001-7488.LYKX20220629
祝琳1,聂立水1,史策1,黄梦遥1,牛鑫1,张润哲1,张兆德1,魏一凡1,王登芝1,杨昊2,聂浩亮3,王江4,薄慧娟5
收稿日期:
2022-09-13
出版日期:
2024-05-25
发布日期:
2024-06-14
基金资助:
Lin Zhu1,Lishui Nie1,Ce Shi1,Mengyao Huang1,Xin Niu1,Runzhe Zhang1,Zhaode Zhang1,Yifan Wei1,Dengzhi Wang1,Hao Yang2,Haoliang Nie3,Jiang Wang4,HuiJuan Bo5
Received:
2022-09-13
Online:
2024-05-25
Published:
2024-06-14
摘要:
目的: 探究北京松山林地土壤nirK型反硝化微生物群落特征及影响因子,为华北暖温带森林土壤生态系统氮循环过程和环境变化提供依据。方法: 在北京松山国家级自然保护区选择油松林、山杨林、蒙古栎林3种典型林型,分别设置3块(20 m× 20 m)标准地进行调查,采集0~20 cm表层混合土样,分析土壤性质并提取土壤微生物总DNA,PCR扩增反硝化过程关键酶亚硝酸盐还原酶的编码基因nirK片段,采用第2代高通量测序分析不同林型土壤nirK型反硝化微生物群落组成和多样性,探究林型和土壤性质对反硝化微生物群落特性的影响。结果: 1) 从油松林、山杨林和蒙古栎林9个土壤样本中共得到nirK基因有效序列993401条、优质序列770328条。3种林型土壤nirK基因共检测出7门78属,在已鉴定的微生物中各林型优势菌为变形菌门,其相对丰度在3种林型中均达50%,在油松林中最高为58.2%;优势属主要为慢生根瘤菌属、中生根瘤菌属和红假单胞菌属,总相对丰度达50%以上,其中核心菌属为慢生根瘤菌属。2) nirK型反硝化微生物α多样性分析显示,油松林Shannon(7.59±0.56)、Simpson(0.98±0.01)、Chao1(2164.24±214.08)指数均显著高于山杨林(5.23±0.26、0.89±0.02、1650.56±136.69)和蒙古栎林(5.76±0.38、0.93±0.02、1621.36±156.70)(P<0.05)。基于Bray-Curtis距离算法并采用PCoA分析显示,不同林型土壤反硝化微生物群落组间差异大于组内。3) 林分因子、土壤性质与土壤反硝化微生物的冗余分析结果表明,土壤碱解氮、硝态氮和有机质等土壤性质是影响nirK型反硝化微生物群落组成的关键因子(P<0.05)。结论: 北京松山油松林、山杨林和蒙古栎林土壤nirK型反硝化微生物群落组成、多样性存在明显差异,林型与碱解氮、硝态氮和有机质等土壤性质是影响土壤nirK型反硝化微生物群落特征的重要因素。
中图分类号:
祝琳,聂立水,史策,黄梦遥,牛鑫,张润哲,张兆德,魏一凡,王登芝,杨昊,聂浩亮,王江,薄慧娟. 北京松山林地nirK型反硝化微生物群落立地及林型效应[J]. 林业科学, 2024, 60(5): 139-150.
Lin Zhu,Lishui Nie,Ce Shi,Mengyao Huang,Xin Niu,Runzhe Zhang,Zhaode Zhang,Yifan Wei,Dengzhi Wang,Hao Yang,Haoliang Nie,Jiang Wang,HuiJuan Bo. Effects of Soil Properties and Stand Factors on nirK-Denitrifying Microbial Community in Songshan, Beijing[J]. Scientia Silvae Sinicae, 2024, 60(5): 139-150.
表1
样地基本概况"
林分类型 Forest stands | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect | 凋落物厚度 Litter depth/cm | 林分密度 Stand density/ (plant·hm?2) | 平均树高 Average height/m | 平均胸径 Average DBH/cm | 郁闭度 Canopy density |
油松林Pinus tabuliformis forest | 941 | 18 | 东East | 7.0 | 894 | 18 | 32 | 0.80 |
山杨林Populus davidiana forest | 869 | 21 | 北North | 1.0 | 992 | 9 | 14 | 0.80 |
蒙古栎林Quercus mongolica forest | 856 | 23 | 东北Northeast | 3.5 | 985 | 7 | 12 | 0.80 |
表2
不同林型下土壤性质①"
林型 Forest stands | pH | 有机质 SOM/(g?kg?1) | 总氮 TN/(g?kg?1) | 碱解氮 AN/(mg?kg?1) | 有效磷 AP/(mg?kg?1) | 速效钾AK/ (mg?kg?1) | 铵态氮NH4+/ (mg?kg?1) | 硝态氮NO3?/ (mg?kg?1) |
油松林Pinus tabuliformis forest | 6.3 ± 0.3a | 70.3 ± 2.8a | 1.6 ± 0.1a | 247.0 ± 10.1a | 2.8 ± 0.1c | 378.0 ± 15.4a | 24.4 ± 2.9a | 28.7 ± 0.2a |
山杨林Populus davidiana forest | 5.7 ± 0.2a | 12.3 ± 0.4c | 0.4 ± 0.01c | 158.1 ± 4.5b | 8.0 ± 0.2a | 110.0 ± 3.1c | 18.7 ± 0.5b | 8.7 ± 0.3b |
蒙古栎林Quercus mongolica forest | 5.9 ± 0.2a | 33.2 ± 1.4b | 0.9 ± 0.03b | 68.0 ± 2.8c | 3.8 ± 0.2b | 174.0 ± 7.1b | 21.4 ± 1.1b | 10.7 ± 2.2b |
表3
不同林型土壤nirK型反硝化微生物的α多样性指数"
林型 Forest stands | Shannon指数Shannon index | Simpson指数Simpson index | Chao1指数Chao1 index |
油松林 Pinus tabuliformis forest | 7.59 ± 0.56a | 0.98 ± 0.01a | 2164.24 ± 214.08a |
山杨林 Populus davidiana forest | 5.23 ± 0.26b | 0.89 ± 0.02b | 1650.56 ± 136.69b |
蒙古栎林 Quercus mongolica forest | 5.76 ± 0.38b | 0.93 ± 0.02b | 1621.36 ± 156.70b |
表4
土壤性质和nirK型反硝化微生物群落α、β多样性相关系数①"
土壤性质 Soil properties | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | β多样性 β diversity |
pH | 0.68* | ?0.33 | 0.47 | 0.48 |
有机质 SOM | 0.78* | ?0.85** | 0.70* | 0.58 |
碱解氮 AN | 0.40 | ?0.85** | 0.72* | 0.46 |
全氮 TN | 0.78* | ?0.42 | 0.70* | 0.58 |
有效磷 AP | ?0.85** | 0.86** | ?0.70* | ?0.52 |
速效钾 AK | 0.75* | ?0.86** | 0.67* | 0.52 |
铵态氮 NH4+-N | 0.90** | ?0.71* | 0.67* | 0.30 |
硝态氮 NO3?-N | 0.77* | ?0.77* | 0.70* | 0.44 |
图5
不同林型土壤性质与nirK型反硝化微生物群落组成冗余分析 PT:油松林Pinus tabuliformis forest; QM:蒙古栎林Quercus mongolica forest; PD:山杨林Populus davidiana forest.Proteobacteria:变形菌门;Firmicutes:厚壁菌门;Actinobacteria:放线菌门;Nitrospirae:硝化螺旋菌门pH: pH值 pH value;SOM: 土壤有机质Soil organic matter;TN: 全氮 Total nitrogen;AN: 碱解氮 Alkali hydrolyzed nitrogen;AP: 有效磷 Available phosphorus;AK: 速效钾 Available potassium;NH4+-N: 铵态氮 Ammonium nitrogen;NO3?-N: 硝态氮 Nitrate nitrogen;Others: 其他Others."
表6
林分因子和nirK型反硝化微生物群落α、β多样性相关系数①"
林分因子 Stand factors | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | β多样性 β diversity |
平均树高 Average height | 0.86** | 0.70* | 0.82** | 0.46 |
平均胸径 Average DBH | 0.88** | 0.74* | 0.82** | 0.49 |
林分密度 Stand density | ?0.91** | ?0.81** | ?0.82** | ?0.53 |
凋落物厚度 Litter depth | 0.90** | 0.88** | 0.73* | 0.57 |
海拔 Altitude | 0.87** | 0.72* | 0.82** | 0.47 |
坡度 Slope | ?0.75* | ?0.56 | 0.77* | 0.37 |
图7
林分因子与nirK型反硝化微生物群落组成冗余分析 PT: 油松林Pinus tabuliformis forest; QM: 蒙古栎林Quercus mongolica forest; PD: 山杨林Populus davidiana forest. Proteobacteria:变形菌门;Firmicutes: 厚壁菌门;Actinobacteria:放线菌门;Nitrospirae: 硝化螺旋菌门;Bacteroidetes:拟杆菌门;Euryarchaeota:广古菌门;Others: 其他;Average height: 平均树高;Average DBH: 平均胸径;Stand density: 林分密度;Litter depth:凋落物厚度;Altitude:海拔;Slope:坡度."
白 静, 田有亮, 韩照日格图, 等. 油松人工林地上生物量、叶面积指数与林分密度关系的研究. 干旱区资源与环境, 2008, 22 (3): 183- 187. | |
Bai J, Tian Y L, Han Z R G T, et al. The research on the relationship between the ground biomass, the leaf area index and the stand density in Pinus tabulaeformis artificial forest. Journal of Arid Land Resources and Environment, 2008, 22 (3): 183- 187. | |
鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agriculture Press. [in Chinese] | |
曹乾斌, 王邵军, 陈闽昆, 等. 不同恢复阶段热带森林土壤nirS型反硝化微生物群落结构及多样性特征. 生态学报, 2021, 41 (2): 626- 636. | |
Cao Q B, Wang S J, Chen M K, et al. The structure and diversity of nirS-denitrifying microbial community across three restoration stages of Xishuangbanna tropical forests. Acta Ecologica Sinica, 2021, 41 (2): 626- 636. | |
陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环. 生态学杂志, 2004, 23 (5): 126- 133. | |
Chen F S, Cao D H, He X Y. Soil nitrogen transformation and cycling in forest ecosystem. Chinese Journal of Ecology, 2004, 23 (5): 126- 133. | |
陈 洁, 骆土寿, 周 璋, 等. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 2020, 40 (23): 8528- 8538. | |
Chen J, Luo S S, Zhou Z, et al. Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecologica Sinica, 2020, 40 (23): 8528- 8538. | |
陈秀波, 段文标, 陈立新, 等. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征. 南京林业大学学报(自然科学版), 2021, 45 (2): 77- 86. | |
Chen X B, Duan W B, Chen L X, et al. Community structure and diversity of soil nirK-type denitrifying microorganisms in three forest types of primitive Pinus koraiensis mixed forest in Liangshui National Nature Reserve, Lesser Khingan Mountains. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (2): 77- 86. | |
陈秀波, 朱德全, 赵晨晨, 等. 凉水国家自然保护区不同林型红松林土壤nosZ型反硝化微生物群落组成和多样性分析. 林业科学, 2019, 55 (8): 106- 117. | |
Chen X B, Zhu D Q, Zhao C C, et al. Structure and diversity of soil nosZ-type denitrifying microbial community in different types of Pinus koraiensis forests in Liangshui National Nature Reserve. Scientia Silvae Sinicae, 2019, 55 (8): 106- 117. | |
楚秀丽, 王 艺, 金国庆, 等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化. 林业科学, 2014, 50 (6): 152- 159. | |
Chu X L, Wang Y, Jin G Q, et al. Variation in growth and wood property and the structure differentiation of schima superba plantation with different sites, stand densities and ages. Scientia Silvae Sinicae, 2014, 50 (6): 152- 159. | |
代力民, 陈 高, 邓红兵, 等. 受干扰长白山阔叶红松林林分结构组成特征及健康距离评估. 应用生态学报, 2004, 15 (10): 1750- 1754.
doi: 10.3321/j.issn:1001-9332.2004.10.009 |
|
Dai L M, Chen G, Deng H B, et al. Structure characteristics and health distance assessment of various disturbed communities of Korean pine and broadleaved mixed forest in Changbai Mountains. Chinese Journal of Applied Ecology, 2004, 15 (10): 1750- 1754.
doi: 10.3321/j.issn:1001-9332.2004.10.009 |
|
杜 倩, 梁素钰, 李 琳, 等. 阔叶红松林土壤酶活性及微生物群落功能多样性分析. 森林工程, 2019, 35 (1): 1- 7. | |
Du Q, Liang S Y, Li L, et al. Soil enzyme activities and microbial community functional diversity of broad leaved Korean pine forest. Forest Engineering, 2019, 35 (1): 1- 7. | |
范雅倩, 安 菁, 梁 晨. 北京市松山国家级自然保护区典型植被群落的土壤微生物群落结构特征. 北方园艺, 2021, 45 (1): 81- 86. | |
Fan Y Q, An Q, Liang C. Soil microbial structure characteristics of typical vegetation communities in Beijing city Songshan National Nature Reserve. Northern Horticulture, 2021, 45 (1): 81- 86. | |
樊振华. 2010. 小陇山国家级自然保护区油松、华山松土壤微生物群落特征研究. 兰州: 西北师范大学. | |
Fan Z H. 2010. The study about soil microbial community under P. tabulaeformis Carr and P. armandii Franch in Xiaolong Mountain National Nature Reserve. Langzhou: Northwest Normal University . [in Chinese] | |
高珍珍, 王 蓉, 龚松玲, 等. 不同类型秸秆还田对稻田土壤nirK型反硝化细菌群落结构的影响. 土壤通报, 2020, 51 (4): 891- 896. | |
Gao Z Z, Wang R, Gong S L, et al. Effects of different types of straw returning on community structure of nirK-denitrifying bacteria in Paddy Soil. Chinese Journal of Soil Science, 2020, 51 (4): 891- 896. | |
胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展. 土壤通报, 2006, 37 (1): 170- 176.
doi: 10.3321/j.issn:0564-3945.2006.01.038 |
|
Hu Y L, Wang S L, Yan Z X. Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science, 2006, 37 (1): 170- 176.
doi: 10.3321/j.issn:0564-3945.2006.01.038 |
|
贾 鹏, 杜国祯. 生态学的多样性指数: 功能与系统发育. 生命科学, 2014, 26 (2): 153- 157. | |
Jia P, Du G J. Measuring functional and phylogenetic diversity in community ecology. Chinese Bulletin of Life Sciences, 2014, 26 (2): 153- 157. | |
李春平, 关文彬, 范志平, 等. 农田防护林生态系统结构研究进展. 应用生态学报, 2003, 14 (11): 2037- 2043. | |
Li C P, Guan W B, Fan Z P, et al. Advances in studies on the structure of farmland shelterbelt ecosystem. Chinese Journal of Applied Ecology, 2003, 14 (11): 2037- 2043. | |
李 刚, 修伟明, 王 杰, 等. 不同植被恢复模式下呼伦贝尔沙地土壤反硝化细菌nirK基因组成结构和多样性研究. 草业学报, 2015, 24 (1): 115- 123. | |
Li G, Xiu W J, Wang J, et al. Community structure and diversity of soil denitrifying bacteria of the nirK gene type under different vegetation restoration patterns in the Hulunbeier sandy land Inner Mongolia. Acta Prataculturae Sinica, 2015, 24 (1): 115- 123. | |
李 轩, 过志峰, 吴门新, 等. 华北地区土壤水分的时空变化特征. 应用生态学报, 2021, 32 (12): 4203- 4211. | |
Li X, Guo Z F, Wu M X, et al. Temporal and spatial variations of soil moisture in north China. Chinese Journal of Applied Ecology, 2021, 32 (12): 4203- 4211. | |
刘晨阳, 高成林, 赵 玥, 等. 基于16S rDNA基因高通量测序分析农田栽参土壤改良后的细菌群落结构. 分子植物育种, 2021, 19 (5): 1731- 1740. | |
Liu C Y, Gao C L, Zhao Y, et al. Analysis of bacterial community structure of farml and planted ginseng soil based on High-throughput sequencing of 16S rDNA gene. Molecular Plant Breeding, 2021, 19 (5): 1731- 1740. | |
罗 蓉. 2018. 黄土高原油松人工林参与土壤氮循环功能微生物群落结构研究. 西安: 西北农林科技大学. | |
Luo R. 2018. Study on the microbial community structure about soil nitrogen cycling in Pinus tabulaeformis plantation on the loess plateau. Xi’an: Northwest A & F University. [in Chinese] | |
聂浩亮, 薄慧娟, 张润哲, 等. 北京海坨山典型林分土壤有机碳含量及有机碳密度垂直分布特征. 林业科学研究, 2020, 33 (6): 155- 162. | |
Nie H L, Bo H J, Zhang R Z, et al. Vertical distribution characteristics of soil organic carbon content and organic carbon density of typical forest stands at Haituo mountain, Beijing. Forest Research, 2020, 33 (6): 155- 162. | |
邵玉琴, 赵 吉, 朱艳华, 等. 科尔沁不同类型沙地土壤微生物类群的研究. 内蒙古大学学报(自然科学版), 2007, 38 (6): 678- 682. | |
Shao Y Q, Zhao J, Zhu Y H, et al. Study on soil microorganism groups of different types of Sandy Land in Korqin Inner Mongolia. Journal of Inner Mongolia University(Natural Science Edition), 2007, 38 (6): 678- 682. | |
施 翔, 唐翠平, 吴 轲, 等. 准噶尔盆地农田防护林树种青杨的生长规律研究. 干旱区资源与环境, 2013, 27 (7): 155- 160. | |
Shi X, Tang C P, Wu K, et al. The growth law of farmland protective forest species Populus cathayana Rehd. in Junggar Basin. Journal of Arid Land Resources and Environment, 2013, 27 (7): 155- 160. | |
陶吉杨, 谭军利, 郑飞龙, 等. 宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响. 干旱地区农业研究, 2022, 40 (3): 207- 217. | |
Tao J Y, Tan J L, Zheng F L, et al. Effects of vegetation recovery modes on major enzyme activities, microbial diversity, and nutrients in hilly soils of southern Ningxia. Agricultural Research in the Arid Areas, 2022, 40 (3): 207- 217. | |
汪龙眠, 仇皓雨, 车昱晓, 等. NUA-DAS生态滤池脱氮效果与反硝化菌特征研究. 环境科学, 2016, 37 (7): 2659- 2665. | |
Wang L M, Qiu H Y, Che Y X, et al. Nitrogen removal and the characteristics of denitrification bacteria using NUA-DAS ecofilter. Environmental Science, 2016, 37 (7): 2659- 2665. | |
王蓥燕, 卢圣鄂, 陈小敏, 等. 2017. 若尔盖高原湿地泥炭沼泽土亚硝酸盐还原酶(nirK)反硝化细菌群落结构分析. 生态学报, 37(19): 6607−6615. | |
Wang Y Y, Lu S E, Chen X M, et al. 2007. Analyzing the nitrate reductase gene (nirK) community in the peat soil of the Zoige Wetland of the Tibetan Plateau. Acta Ecologica Sinica, 37(19): 6607−6615. [in Chinese] | |
夏北成. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9 (3): 73- 77.
doi: 10.3321/j.issn:1001-9332.1998.03.016 |
|
Xia B C. Effect of vegetation on structure of soil microbial community. Chinese Journal of Applied Ecology, 1998, 9 (3): 73- 77.
doi: 10.3321/j.issn:1001-9332.1998.03.016 |
|
阎恩荣, 王希华, 周 武. 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报, 2008, 54 (1): 1- 12.
doi: 10.3773/j.issn.1005-264x.2008.01.001 |
|
Yan E R, Wang X H, Zhou W. Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, east China. Chinese Journal of Plant Ecology, 2008, 54 (1): 1- 12.
doi: 10.3773/j.issn.1005-264x.2008.01.001 |
|
张杰铭, 余新晓, 贾国栋, 等. 坝下地区防护林不同树种生长特征. 应用生态学报, 2017, 28 (10): 3174- 3180. | |
Zhang J M, Yu X X, Jia G D, et al. Growth characteristics of different tree species in shelterbelts in the depression area of Hebei Province, China. Chinese Journal of Applied Ecology, 2017, 28 (10): 3174- 3180. | |
张 亮, 黄建国. 菜豆根瘤菌对土壤无机磷的活化释放作用. 土壤学报, 2012, 49 (5): 996- 1002.
doi: 10.11766/trxb201106130213 |
|
Zhang L, Huang J G. Effect of Rhizobium phaseoli on mobilization and release of inorganic phosphorus in soil. Acta Pedologica Sinica, 2012, 49 (5): 996- 1002.
doi: 10.11766/trxb201106130213 |
|
张旭志, 杨倩倩, 赵 俊, 等. 反硝化功能基因nirS和nirK及其检测技术研究进展. 微生物学杂志, 2018, 38 (4): 84- 91.
doi: 10.3969/j.issn.1005-7021.2018.04.012 |
|
Zhang X Z, Yang Q Q, Chen J, et al. Advances in denitrification functional gene nirS and nirK and their detection technology. Journal of Microbiology, 2018, 38 (4): 84- 91.
doi: 10.3969/j.issn.1005-7021.2018.04.012 |
|
Allison S D, Martiny J. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Science, 2008, 105 (Supplement1): 11512- 11519. | |
Braker G, Zhou J, Wu L, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Applied and Environmental Microbiology, 2000, 66 (5): 2096- 2104. | |
Bremer C, Braker G, Matthies D, et al. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Applied and Environmental Microbiology, 2007, 73 (21): 6876- 6884. | |
Chen J, Nie Y, Liu W, et al. Ammonia-Oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil. Frontiers in Microbiology, 2017, 24 (8): 13- 84. | |
Chen Y L, Kou D, Li F, et al. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions. Plant and Soil, 2018, 434 (1): 453- 466. | |
Deyn G, Putten W. Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 2005, 20 (11): 625- 633. | |
Ehrenfeld J G, Han X, Parsons W F J, et al. On the nature of environmental gradients: temporal and spatial variability of soils and vegetation in the New Jersey Pinelands. Journal of Ecology, 1997, 85 (6): 785- 798. | |
Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 2005, 71 (12): 8335- 8343. | |
Fazi S, Amalfitano S, et al. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environmental Microbiology, 2005, 7 (10): 1633- 1640. | |
Hallin S, Lindgren P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied & Environmental Microbiology, 1999, 65 (4): 1652- 1657. | |
Jahangir M, Khail M, Johnston P, et al. 2012. Denitrification potential in subsoils: a mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems & Environment, 147(1): 13−23. | |
Jones C M, Hallin S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. The ISME Journal, 2010, 4 (5): 633- 641.
doi: 10.1038/ismej.2009.152 |
|
Kandeler E, Brune T, Enowashu E, et al. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiology Ecology, 2009, 67 (3): 444- 454.
doi: 10.1111/j.1574-6941.2008.00632.x |
|
Kramer S B, Reganold J P, Glover J D, et al. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proceedings of the National Academy of Sciences, 2006, 103 (12): 4522- 4527.
doi: 10.1073/pnas.0600359103 |
|
Meng H, Wu R, Wang Y F, et al. A comparison of denitrifying bacterial community structures and abundance in acidic soils between natural forest and re-vegetated forest of Nanling Nature Reserve in southern China. Journal of Environmental Management, 2017, 198 (2): 41- 49. | |
Morales S E, Cosart T, Holben W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME Journal, 2010, 4 (6): 799- 808.
doi: 10.1038/ismej.2010.8 |
|
Neyra C A, Dobereiner J, Lalande R, et al. Denitrification by N2-fixing Spirillum lipoferum. Canadian Journal of Microbiology, 1977, 23 (3): 300- 305.
doi: 10.1139/m77-044 |
|
Niu Y, Hu W, Zhou T, et al. Diversity of nirS and nirK denitrifying bacteria in rhizosphere and non-rhizosphere soils of halophytes in Ebinur Lake Wetland. Biotechnology & Biotechnological Equipment, 2022, 36 (1): 209- 219. | |
Park S, Kim H, Kim M, et al. Monitoring nitrate natural attenuation and analysis of indigenous micro-organism community in groundwater. Desalination and Water Treatment, 2016, 57 (51): 24096- 24108.
doi: 10.1080/19443994.2016.1145955 |
|
Qin H, Xing X, Tang Y, et al. Linking soil N2O emissions with soil microbial community abundance and structure related to nitrogen cycle in two acid forest soils. Plant and Soil, 2019, 435 (1): 95- 109. | |
Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 2000, 289 (5486): 1922- 1925.
doi: 10.1126/science.289.5486.1922 |
|
Santoro A E, Boehm A B, Francis C A. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Applied and Environmental Microbiology, 2006, 72 (3): 2102- 2109.
doi: 10.1128/AEM.72.3.2102-2109.2006 |
|
Shang Z H, Ding L L, Long R J, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2007, 16 (1): 34- 40. | |
Shaw L J, Nicol G W, Smith Z, et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology, 2006, 8 (2): 214- 222.
doi: 10.1111/j.1462-2920.2005.00882.x |
|
Silvia P, Bohannan B J. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in Microbiology, 2016, 7, 1045. | |
Sprent J, Parsons R. Nitrogen fixation in legume and non-legume trees. Field Crops Research, 2000, 65 (2-3): 183- 196.
doi: 10.1016/S0378-4290(99)00086-6 |
|
Tang Y, Zhang X, Li D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry, 2016, 103, 284- 293.
doi: 10.1016/j.soilbio.2016.09.001 |
|
Xie Z, Roux X L, Wang C, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biology & Biochemistry, 2014, 77, 89- 99. | |
Zumft W. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Review, 1997, 61 (4): 533- 616. |
[1] | 王文正,宋立国,王钱,刘相荣,孙启武,厚凌宇. 江西九龙山铁尾矿区3种树木对土壤重金属质量分数及微生物群落组成的影响[J]. 林业科学, 2024, 60(3): 78-86. |
[2] | 夏虹,夏春燕,宋海燕,杜羽,陶建平. 重庆金佛山3种喀斯特森林群落木本植物种子雨、土壤种子库与幼苗更新[J]. 林业科学, 2022, 58(1): 1-11. |
[3] | 陈秀波, 朱德全, 赵晨晨, 张路路, 陈立新, 段文标. 凉水国家自然保护区不同林型红松林土壤nosZ型反硝化微生物群落组成和多样性分析[J]. 林业科学, 2019, 55(8): 106-117. |
[4] | 字洪标, 向泽宇, 王根绪, 阿的鲁骥, 王长庭. 青海不同林分土壤微生物群落结构(PLFA)[J]. 林业科学, 2017, 53(3): 21-32. |
[5] | 向泽宇, 张莉, 张全发, 刘伟, 王根绪, 王长庭, 胡雷. 青海不同林分类型土壤养分与微生物功能多样性[J]. 林业科学, 2014, 50(4): 22-31. |
[6] | 徐化成 杜亚娟. 兴安落叶松落叶量和幼苗发生动态的研究[J]. , 1993, 29(4): 298-306. |
[7] | 李香兰 田积莹 张成娥. 黄土高原不同林型对土壤物理性质影响的研究[J]. , 1992, 28(2): 97-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||