林业科学 ›› 2024, Vol. 60 ›› Issue (11): 37-47.doi: 10.11707/j.1001-7488.LYKX20240154
周方1,2(),蒋科毅3,叶兰华4,沈庆华4,童冉1,朱念福1,苗永朝1,吴统贵1,*
收稿日期:
2024-03-08
出版日期:
2024-11-25
发布日期:
2024-11-30
通讯作者:
吴统贵
E-mail:z_fang412@126.com
基金资助:
Fang Zhou1,2(),Keyi Jiang3,Lanhua Ye4,Qinghua Shen4,Ran Tong1,Nianfu Zhu1,Yongzhao Miao1,Tonggui Wu1,*
Received:
2024-03-08
Online:
2024-11-25
Published:
2024-11-30
Contact:
Tonggui Wu
E-mail:z_fang412@126.com
摘要:
目的: 探究林分类型对土壤磷素有效性的影响及作用路径,揭示调控土壤磷素有效性的关键无机磷组分,为百山祖国家公园人工林土壤肥力维持和可持续经营提供理论依据。方法: 以百山祖国家公园杉木纯林、马尾松纯林、杉木马尾松混交林和杉木毛竹混交林为对象,测定0~10、10~20和20~40 cm土层土壤的基本性质、无机磷组分和有效磷含量等,分析全磷、有效磷和无机磷组分含量在林分类型间的差异,揭示土壤磷素有效性变化的关键驱动因素。结果: 4类林分0~40 cm土层土壤的全磷和有效磷含量分别为0.14~0.24 g·kg?1和0.73~1.72 mg·kg?1,平均值分别为0.19 g·kg?1和1.11 mg·kg?1,4类林分0~40 cm土层土壤的磷素活化系数为0.42%-0.72%,平均值为0.59%,且均以杉木毛竹混交林最高;4类林分0~40 cm土层土壤的各无机磷组分含量均表现出差异,杉木毛竹混交林均高于其他3类林分;除闭蓄态磷酸盐含量外,磷酸铝盐、磷酸铁盐、磷酸钙盐、可溶性磷含量等均与有效磷含量显著正相关(P<0.01);标准化主轴分析表明,磷酸铝盐含量与有效磷含量之间的异速增长指数显著低于1.00(P<0.01),磷酸铁盐含量、磷酸钙盐含量和可溶性磷含量与有效磷含量的异速增长指数均显著大于1.00(P<0.01);随机森林分析表明,磷酸铝盐、水解性氮和全氮含量是土壤有效磷含量的最主要调控因子;偏最小二乘法结构方程模型表明,林分类型通过影响土壤基本性质(全氮和水解性氮含量)、计量比(碳氮比和氮磷比)和无机磷组分(磷酸铝盐和磷酸铁盐含量)等对土壤有效磷含量起间接的正向调控作用。结论: 本研究区内,林分类型对土壤有效磷的直接效应不显著,但通过调控氮素水平、养分计量特征和无机磷组分等产生显著的间接效应。磷酸铝盐是土壤磷素有效性变化中最主要的调控因子。营建针阔混交林是提升百山祖国家公园人工林土壤磷素有效性的关键措施。
中图分类号:
周方,蒋科毅,叶兰华,沈庆华,童冉,朱念福,苗永朝,吴统贵. 百山祖国家公园人工林土壤磷素有效性及其影响因素[J]. 林业科学, 2024, 60(11): 37-47.
Fang Zhou,Keyi Jiang,Lanhua Ye,Qinghua Shen,Ran Tong,Nianfu Zhu,Yongzhao Miao,Tonggui Wu. Soil Phosphorus Availability and Its Influencing Factors of the Plantations in Baishanzu National Park[J]. Scientia Silvae Sinicae, 2024, 60(11): 37-47.
表1
4类林分样地基本状况"
林分类型 Stand type | 坡度 Slope/ (o) | 郁闭度 Canopy density | 平均树高 Mean tree height/ m | 平均胸径 Mean DBH/ cm | 林分密度 Stand density/ hm?2 |
杉木纯林 Chinese fir pure forest | 28 | 0.70 | 10.5 | 11.7 | 1 550 |
马尾松纯林 Masson pine pure forest | 33 | 0.75 | 13.8 | 17.2 | 1 675 |
杉木马尾松混交林 Chinese fir-masson pine mixed forests | 30 | 0.80 | 10.9 / 12.3 | 12.5 / 14.2 | 1 875 |
杉木毛竹混交林 Chinese fir-moso bamboo mixed forests | 25 | 0.83 | 9.8 / 8.5 | 10.4 / 8.3 | 2 525 |
表2
4类林分0~40 cm土层土壤的基本性质(n=9)①"
林分类型 Stand type | 土层 Soil layer/cm | pH | 有机碳含量 Organic carbon content/(g·kg?1) | 全氮含量 Total nitrogen content/(g·kg?1) | 碳氮比 Organic carbon/ total nitrogen | 碳磷比 Organic carbon/ total phosphorus | 氮磷比 Total nitrogen/ total phosphorus | 水解性氮含量 Hydrolyzable nitrogen content/ (mg·kg?1) |
杉木纯林 Chinese fir pure forest | 0~10 | 4.54±0.13 | 19.53±5.52 | 1.19±0.23 | 16.19±1.96 | 101.74±24.74AB | 6.24±0.95B | 82.43±4.05B |
10~20 | 4.75±0.19 | 15.60±3.83 | 0.83±0.20B | 18.79±1.73 | 81.58±16.82 | 4.36±0.92B | 56.73±19.82B | |
20~40 | 4.70±0.12 | 17.34±2.66AB | 0.79±0.04C | 21.93±3.92AB | 110.23±23.53AB | 5.04±0.76 | 49.80±14.50B | |
均值 Mean | 4.67±0.03 | 17.45±1.16 | 0.90±0.11C | 19.40±1.30 | 99.87±1.82AB | 5.17±0.45B | 59.69±12.58B | |
马尾松纯林 Masson pine pure forest | 0~10 | 4.64±0.09 | 24.86±7.40 | 1.53±0.29a | 16.08±2.86 | 117.52±10.83ABab | 7.40±0.75AB | 113.43±14.90ABa |
10~20 | 4.70±0.13 | 16.47±9.91 | 1.20±0.13Aab | 13.25±7.14 | 78.93±35.99b | 6.29±0.91AB | 83.37±7.81Bab | |
20~40 | 4.74±0.07 | 25.52±7.78A | 1.00±0.10Bb | 25.45±7.58A | 142.28±13.42Aa | 5.81±1.13 | 60.77±12.91Bb | |
均值 Mean | 4.70±0.08 | 23.10±8.18 | 1.18±0.12B | 19.16±5.11 | 119.12±17.55A | 6.37±0.88AB | 79.58±8.14B | |
杉木马尾松 混交林 Chinese fir-masson pine mixed forests | 0~10 | 4.61±0.05 | 26.10±4.06a | 1.49±0.11a | 17.50±2.14 | 151.57±21.82Aa | 8.66±0.64Aa | 114.33±9.07ABa |
10~20 | 4.71±0.10 | 20.24±2.42ab | 1.14±0.11ABb | 17.68±0.63 | 130.75±15.81ab | 7.39±0.83Aab | 81.73±5.08Bb | |
20~40 | 4.67±0.03 | 13.36±1.80Bb | 0.73±0.04Cc | 18.19±1.64AB | 106.12±4.34ABb | 5.87±0.64b | 53.00±7.25Bc | |
均值 Mean | 4.66±0.04 | 18.27±1.69 | 1.02±0.04BC | 17.82±1.42 | 126.43±13.24A | 7.11±0.77A | 75.52±6.52B | |
杉木毛竹 混交林 Chinese fir- moso bambo mixed forests | 0~10 | 4.75±0.11 | 23.38±4.46 | 1.73±0.23a | 13.45±1.29 | 94.68±24.30B | 6.98±1.17AB | 141.67±27.01A |
10~20 | 4.81±0.03 | 21.00±1.78 | 1.49±0.05Aab | 14.11±0.77 | 87.20±11.05 | 6.17±0.45AB | 120.67±10.69A | |
20~40 | 4.81±0.08 | 17.92±1.98AB | 1.30±0.10Ab | 13.78±0.95B | 75.76±10.27B | 5.48±0.37 | 102.67±4.16A | |
均值 Mean | 4.80±0.05 | 20.06±2.36 | 1.46±0.07A | 13.75±0.97 | 83.45±13.99B | 6.04±0.57AB | 116.92±10.21A |
表3
4类林分0~40 cm土层土壤的全磷、有效磷含量及磷素活化系数(n=36)①"
林分类型 Stand type | 全磷含量 Total phosphorus content/(g·kg?1) | 有效磷含量 Available phosphorus content/(mg·kg?1) | 磷素活化系数 Phosphorus activation coefficient (%) |
杉木纯林 Chinese fir pure forest | 0.17±0.01b | 0.73±0.20b | 0.42±0.10 |
马尾松纯林 Masson pine pure forest | 0.19±0.04ab | 1.09±0.36ab | 0.62±0.33 |
杉木马尾松混交林 Chinese fir-masson pine mixed forests | 0.14±0.01b | 0.89±0.10b | 0.62±0.12 |
杉木毛竹混交林 Chinese fir-moso bamboo mixed forests | 0.24±0.01a | 1.72±0.43a | 0.72±0.21 |
均值 Mean | 0.19 | 1.11 | 0.59 |
标准差 Standard deviation | 0.04 | 0.47 | 0.21 |
变异系数 Coefficient of variation (%) | 21.05 | 42.34 | 35.59 |
图1
4类林分不同土层土壤的磷素含量及活化系数(n=9) 不同林分同一土层间不同大写字母表示差异显著(P<0.05),同一林分不同土层间不同小写字母表示差异显著(P<0.05),未标注字母表示差异不显著。Different capital letters indicate significant differences between the same soil layer in different stand types (P<0.05), and different lowercase letters indicate significant differences between different soil layers in the same stand types (P<0.05). The absence of letters indicates that the differences are not significant."
表4
4类林分0~40 cm土层土壤无机磷组分特征(n=36)①"
林分类型 Stand type | 可溶性磷含量 Soluble phosphorus content/(mg·kg?1) | 闭蓄态磷酸盐含量 Occluded phosphate content/(mg·kg?1) | 磷酸铝盐含量 Aluminum phosphate content/(mg·kg?1) | 磷酸铁盐含量 Iron phosphate content/(mg·kg?1) | 磷酸钙盐含量 Calcium phosphate content/(mg·kg?1) |
杉木纯林 Chinese fir pure forest | 0.50±0.10ab | 113.55±3.30ab | 5.26±1.61b | 23.23±4.33b | 2.93±0.57b |
马尾松纯林 Masson pine pure forest | 0.45±0.08b | 111.61±27.07ab | 9.67±3.15ab | 29.57±6.71b | 4.06±0.92ab |
杉木马尾松混交林 Chinese fir-masson pine mixed forests | 0.60±0.11ab | 81.59±11.28b | 7.16±0.91b | 25.63±0.63b | 3.50±0.05b |
杉木毛竹混交林 Chinese fir-moso bamboo mixed forests | 0.73±0.07a | 132.00±3.21a | 15.34±2.66a | 48.57±0.40a | 5.68±0.66a |
均值 Mean | 0.57 | 109.69 | 9.36 | 31.75 | 4.04 |
标准差 Standard deviation | 0.13 | 22.72 | 4.40 | 10.96 | 1.20 |
变异系数Coefficient of variation (%) | 22.81 | 20.71 | 47.01 | 34.52 | 29.70 |
表5
土壤有效磷和无机磷组分的标准化主轴分析(n=36)①"
土壤有效磷含量与无机磷组分 Available phosphorus content and inorganic phosphorus fractions (lgy-lgx) | R2 | 异速增长指数 (95%置信区间) Allometric growth exponent (95% confidence interval) | 截距 (95%置信区间) Intercept (95% confidence interval) |
有效磷含量-磷酸铝盐含量 Available phosphorus content- aluminum phosphate content | 0.88*** | 0.79(0.69, 0.89) | ?0.71(?0.81, ?0.61) |
有效磷含量-磷酸铁盐含量 Available phosphorus content- iron phosphate content | 0.55*** | 1.92(1.43, 2.74) | ?2.85(?3.76, 1.95) |
有效磷含量-磷酸钙盐含量 Available phosphorus content- calcium phosphate content | 0.58*** | 1.88(1.42, 2.61) | ?1.12(?1.46, 0.78) |
有效磷含量-可溶性磷含量 Available phosphorus content- soluble phosphorus content | 0.25** | 2.71(1.61, 6.61) | 0.72(0.28, 1.16) |
鲍士旦. 2000. 土壤农化分析. 3版. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil and agricultural chemistry analysis. 3rd ed. Beijing: China Agriculture Press. [in Chinese] | |
曹 娟, 闫文德, 项文化, 等. 湖南会同不同年龄杉木人工林土壤磷素特征. 生态学报, 2014, 34 (22): 6519- 6527. | |
Cao J, Yan W D, Xiang W H, et al. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province. Acta Ecologica Sinica, 2014, 34 (22): 6519- 6527. | |
陈嘉琪, 赵光宇, 李仰龙, 等. 杉木人工林土壤磷素形态及含量的林龄变化. 林业科学, 2022, 58 (5): 10- 17.
doi: 10.11707/j.1001-7488.20220502 |
|
Chen J Q, Zhao G Y, Li Y L, et al. Age changes of soil phosphorus form and content in Chinese fir plantations. Scientia Silvae Sinicae, 2022, 58 (5): 10- 17.
doi: 10.11707/j.1001-7488.20220502 |
|
陈立新, 杨承冻. 落叶松人工林土壤磷素形态、磷酸酶活性演变与林木生长关系的研究. 林业科学, 2004, 40 (3): 12- 18.
doi: 10.3321/j.issn:1001-7488.2004.03.002 |
|
Chen L X, Yang C D. The succession of various types of phosphorus, phosphatase activity, and the relationship with the tree growth in larch plantations. Scientia Silvae Sinicae, 2004, 40 (3): 12- 18.
doi: 10.3321/j.issn:1001-7488.2004.03.002 |
|
陈美领, 陈 浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响. 生态学报, 2016, 2016,36 (16): 4965- 4976. | |
Chen M L, Chen H, Mao Q G, et al. Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review. Acta Ecologica Sinica, 2016, 2016,36 (16): 4965- 4976. | |
程瑞梅, 王 娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展. 林业科学, 2018, 54 (7): 130- 136.
doi: 10.11707/j.1001-7488.20180714 |
|
Cheng R M, Wang N, Xiao W F, et al. Advances in studies of ecological stoichiometry of terrestrial ecosystems. Scientia Silvae Sinicae, 2018, 54 (7): 130- 136.
doi: 10.11707/j.1001-7488.20180714 |
|
全国土壤普查办公室. 1992. 中国土壤普查技术. 北京: 农业出版社. | |
China Soil Survey Office. 1992. Soil census techniques in China. Beijing: Agricultural Press. [in Chinese] | |
樊纲惟, 项文化, 雷丕峰, 等. 亚热带常绿阔叶林土壤磷素空间分布特征及其影响因素. 农业现代化研究, 2014, 35 (3): 367- 370. | |
Fan G W, Xiang W H, Lei P F, et al. Spatial distribution and driving factors of soil phosphorus in a subtropical evergreen broadleaf forest. Research of Agricultural Modernization, 2014, 35 (3): 367- 370. | |
冯婵莹, 郑成洋, 田 地. 氮添加对森林植物磷含量的影响及其机制. 植物生态学报, 2019, 43 (3): 185- 196.
doi: 10.17521/cjpe.2018.0240 |
|
Fen C Y, Zheng C Y, Tian D. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms. Chinese Journal of Plant Ecology, 2019, 43 (3): 185- 196.
doi: 10.17521/cjpe.2018.0240 |
|
何 敏, 许秋月, 夏 允, 等. 植物磷获取机制及其对全球变化的响应. 植物生态学报, 2023, 47 (3): 291- 305.
doi: 10.17521/cjpe.2021.0451 |
|
He M, Xu Q Y, Xia Y, et al. Plant phosphorus acquisition mechanisms and their response to global climate changes. Chinese Journal of Plant Ecology, 2023, 47 (3): 291- 305.
doi: 10.17521/cjpe.2021.0451 |
|
黄志宏, 田大伦, 周光益,等. 广东南岭不同林分类型土壤养分状况比较分析. 东北林业大学学报, 2009, 37 (9): 63- 67.
doi: 10.3969/j.issn.1000-5382.2009.09.023 |
|
Huang Z H, Tian D L, Zhou G Y, et al. Soil nutrient status of different forest types in Nanling mountains, northern Guangdong Province. Journal of Northeast Forestry University, 2009, 37 (9): 63- 67.
doi: 10.3969/j.issn.1000-5382.2009.09.023 |
|
简尊吉, 倪妍妍, 徐 瑾, 等. 中国马尾松林土壤肥力特征. 生态学报, 2021, 41 (13): 5279- 5288. | |
Jian Z J, Ni Y Y, Xu J, et al. Soil fertility in the Pinus massoniana forests of China. Acta Ecologica Sinica, 2021, 41 (13): 5279- 5288. | |
蒋 芬, 黄 娟, 褚国伟, 等. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献. 植物生态学报, 2021, 45 (2): 197- 206.
doi: 10.17521/cjpe.2020.0263 |
|
Jiang F, Huang J, Chu G W, et al. Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests. Chinese Journal of Plant Ecology, 2021, 45 (2): 197- 206.
doi: 10.17521/cjpe.2020.0263 |
|
李学敏, 张劲苗. 河北潮土磷素状态的研究. 土壤通报, 1994, 25 (6): 259- 260. | |
Li X M, Zhang J M. Distribution of soil phosphorus in Hebei Province. Chinese Journal of Soil Science, 1994, 25 (6): 259- 260. | |
刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34 (1): 64- 71.
doi: 10.3773/j.issn.1005-264x.2010.01.010 |
|
Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34 (1): 64- 71.
doi: 10.3773/j.issn.1005-264x.2010.01.010 |
|
王亚茹, 林鑫宇, 惠 昊, 等. 杨树人工林类型对土壤磷组分的影响. 生态学杂志, 2021, 40 (6): 1549- 1556. | |
Wang Y R, Lin X Y, Hui H, et al. Effects of polar plantation types on soil phosphorus fractions. Chinese Journal of Ecology, 2021, 40 (6): 1549- 1556. | |
吴 慧, 田书荣, 廖德志, 等. 竹林扩张进入杉木人工林对土壤磷素的影响. 中南林业科技大学学报, 2023, 43 (5): 66- 72. | |
Wu H, Tian S R, Liao D Z, et al. Effects of bamboo forest expansion on soil phosphorus in Cunninghamia lanceolata plantation. Journal of Central South University of Forestry & Technology, 2023, 43 (5): 66- 72. | |
许窕孜, 叶彩红, 张 耕, 等. 北江中下游不同林分类型土壤C、N、P生态化学计量特征. 应用生态学报, 2023, 34 (4): 962- 968. | |
Xu T Z, Ye C H, Zhang G, et al. Soil C, N and P stoichiometry in different forest stand types in the middle and lower reaches of Beijiang River, China. Chinese Journal of Applied Ecology, 2023, 34 (4): 962- 968. | |
张 虹, 于姣妲, 李海洋, 等. 不同栽植代数杉木人工林土壤磷素特征研究. 林业科学研究, 2021, 34 (1): 10- 18. | |
Zhang H, Yu J D, Li H Y, et al. Characteristics of soil phosphorus in Cunninghamia lanceolata plantations with different planting rotations. Forest Research, 2021, 34 (1): 10- 18. | |
张英鹏, 陈 清, 李 彦, 等. 2008. 不同磷水平对山东褐土耕层无机磷形态及磷有效性的影响. 中国农学通报, 24(7): 245−248. | |
Zhang Y P, Chen Q, Li Y, et al. 2011. Effect of phosphorus levels on fore and bioavailability of inorganic P in plough layer of cinnamon soil in Shandong Province. Chinese Agricultural Science Bulletin, 24(7): 245−248. [in Chinese] | |
Augusto L, Ranger J, Binkley D, et al. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 2002, 59 (3): 233- 253.
doi: 10.1051/forest:2002020 |
|
Bowman W D, Cleveland C C, Halada L, et al. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1 (11): 767- 770.
doi: 10.1038/ngeo339 |
|
Chadwick O A, Chorover J. The chemistry of pedogenic thresholds. Geoderma, 2001, 100 (3/4): 321- 353.
doi: 10.1016/S0016-7061(01)00027-1 |
|
Chang S C, Jackson M L. Solubility product of iron phosphate. Soil Science Society of America Journal, 1957, 21 (3): 265- 269.
doi: 10.2136/sssaj1957.03615995002100030005x |
|
Chen H J. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management, 2003, 178 (3): 301- 310.
doi: 10.1016/S0378-1127(02)00478-4 |
|
Cui E Q, Lu R L, Xu X N, et al. Soil phosphorus drives plant trait variations in a mature subtropical forest. Global Change Biology, 2022, 28 (10): 3310- 3320.
doi: 10.1111/gcb.16148 |
|
Fan Y X, Zhong X J, Lin F, et al. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337, 246- 255.
doi: 10.1016/j.geoderma.2018.09.028 |
|
Haghverdi K, Kooch Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena, 2019, 178, 335- 344.
doi: 10.1016/j.catena.2019.03.041 |
|
Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237 (2): 173- 195.
doi: 10.1023/A:1013351617532 |
|
Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11 (1): 637.
doi: 10.1038/s41467-020-14492-w |
|
Jia T, Fang X M, Yuan Y, et al. Phosphorus addition alter the pine resin flow rate by regulating tree growth and non-structural carbohydrates in a subtropical slash pine plantation. Industrial Crops and Products, 2023, 199, 116782.
doi: 10.1016/j.indcrop.2023.116782 |
|
Jiang B S, Shen J L, Sun M H, et al. Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 2021, 31 (1): 103- 115.
doi: 10.1016/S1002-0160(20)60053-4 |
|
Li J B, Xie T, Zhu H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404, 115376.
doi: 10.1016/j.geoderma.2021.115376 |
|
Liu Y, Zhang G H, Luo X Z, et al. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession. Soil Biology and Biochemistry, 2021, 153, 108099.
doi: 10.1016/j.soilbio.2020.108099 |
|
Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (30): 11001- 11006. | |
Richardson A E, Lynch J P, Ryan P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349 (1): 121- 156. | |
Rothe A, Binkley D. Nutritional interactions in mixed species forests: a synthesis. Canadian Journal of Forest Research, 2001, 31 (11): 1855- 1870.
doi: 10.1139/x01-120 |
|
Santín C, Otero X L, Doerr S H, et al. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Science of the Total Environment, 2018, 621, 1103- 1114.
doi: 10.1016/j.scitotenv.2017.10.116 |
|
Schmidt M, Veldkamp E, Corre M D. Tree species diversity effects on productivity, soil nutrient availability and nutrient response efficiency in a temperate deciduous forest. Forest Ecology and Management, 2015, 338, 114- 123.
doi: 10.1016/j.foreco.2014.11.021 |
|
Tian D S, Niu S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10 (2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
|
Wu C S, Mo Q F, Wang H K, et al. Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) invasion affects soil phosphorus dynamics in adjacent coniferous forests in subtropical China. Annals of Forest Science, 2018, 75 (1): 1- 11.
doi: 10.1007/s13595-017-0678-2 |
|
Yang L M, Yang Z J, Zhong X J, et al. Decreases in soil P availability are associated with soil organic P declines following forest conversion in subtropical China. Catena, 2021, 205, 105459.
doi: 10.1016/j.catena.2021.105459 |
|
Zhang D H, Ye Z F, Luo S F. The preliminary study on P adsorption and P desorption in Fujian mountain red soils. Journal of Mountain Science, 2001, 19 (1): 19- 23. | |
Zhang N Y, Qiong W, Zhan X Y, et al. 2022a. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils. Journal of Integrative Agriculture, 21(12): 3626-3636. | |
Zhang P P, Yin M Z, Zhang X J, et al. 2022b. Differential aboveground-belowground adaptive strategies to alleviate N addition-induced P deficiency in two alpine coniferous forests. Science of the Total Environment, 849: 157906. |
[1] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[2] | 竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32. |
[3] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[4] | 张翱,李文婷,王天祥,武耀星,雷刚,漆良华. 毛竹林土壤易氧化有机碳区域分异及影响因素[J]. 林业科学, 2024, 60(6): 1-12. |
[5] | 郑梦杰,谢炜,马行聪,黄坚钦,彭丽媛,秦华. 山核桃根系分泌物对溶磷菌生长及活化土壤磷的影响[J]. 林业科学, 2024, 60(6): 60-70. |
[6] | 黄书苑,马丁丑,傅一敏,杨建州. 生态脆弱地区林业全要素生产率变动及其影响因素——基于甘肃省10年500个农户的跟踪调查[J]. 林业科学, 2024, 60(6): 153-164. |
[7] | 韩新生,许浩,蔡进军,董立国,郭永忠,王月玲,万海霞,安钰. 宁夏黄土区稀疏带状山杏人工林土壤湿度动态与影响因素[J]. 林业科学, 2024, 60(4): 79-90. |
[8] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[9] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[10] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[11] | 刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36. |
[12] | 杨豆,刘超华,李凤巧,唐罗忠,田野,方升佐,李孝刚. 苏北平原2个密度杨树人工林土壤团聚体及固碳差异[J]. 林业科学, 2024, 60(10): 21-28. |
[13] | 李鑫豪,张德怀,张赵森,李建,曹俊,隗骥超,吴晓朦,田赟,刘鹏,于海群. 北京密云油松人工林碳通量组分季节变化及其对环境因子的响应[J]. 林业科学, 2023, 59(7): 35-44. |
[14] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[15] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||