林业科学 ›› 2024, Vol. 60 ›› Issue (7): 17-27.doi: 10.11707/j.1001-7488.LYKX20230443
杨润露,王娟*,张春雨
收稿日期:
2023-09-27
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
王娟
基金资助:
Runlu Yang,Juan Wang*,Chunyu Zhang
Received:
2023-09-27
Online:
2024-07-25
Published:
2024-08-19
Contact:
Juan Wang
摘要:
目的: 探究采伐干扰对东北典型天然次生针阔混交林乔木层碳储量变化的影响,为东北地区森林可持续经营提供理论依据。方法: 在吉林省林业实验区国有林保护中心选取4块1 hm2针阔混交林样地,2011年开展初次调查,同年冬季进行采伐作业,2013、2015、2018和2021年复测保留木。采用双变量线性回归法,探讨采伐强度、物种多样性、功能多样性、系统发育多样性和群落加权平均性状值对碳储量和碳增量的影响;使用多元线性回归模型,比较各变量的贡献程度;利用结构方程模型,检验各变量对碳储量和碳增量的直接和间接效应。结果: 1) 碳储量和碳增量多元线性回归模型中,采伐强度对碳储量和碳增量的贡献分别占总解释量的25%和5%;植物物种多样性对碳储量和碳增量的贡献分别占总解释量(物种、功能、系统发育多样性)的67%和58%;群落加权平均性状值对碳储量和碳增量的贡献分别占总解释量的8%和37%。2) 碳储量结构方程模型中,采伐强度对系统发育多样性、功能多样性、最大树高加权性状值和碳储量具有显著负向效应,路径系数分别为?0.221、?0.454、?0.337和?0.229;采伐强度对木质密度加权性状值具有显著正向效应,路径系数为0.368;采伐强度对物种多样性的直接效应不显著;物种多样性和功能多样性对碳储量具有显著正向效应,路径系数分别为0.306和0.235;系统发育多样性和群落加权平均值对碳储量的直接效应不显著。3) 碳增量结构方程模型中,最大树高加权性状值对碳增量具有显著正向效应,功能多样性与木质密度加权性状值不相关,其他变量间的关系与碳储量模型相同。结论: 物种多样性、功能多样性、群落加权平均性状值对碳储量和碳增量具有直接影响,森林经营时可通过增加植物种类以促成功能多样的林分来提高森林碳汇能力。采伐强度直接或间接通过功能多样性和群落加权平均性状值减少碳储量和碳增量,在森林经营中应合理采伐,以提高森林碳汇能力。
中图分类号:
杨润露,王娟,张春雨. 东北天然次生针阔混交林乔木层碳储量变化的采伐干扰响应[J]. 林业科学, 2024, 60(7): 17-27.
Runlu Yang,Juan Wang,Chunyu Zhang. Response of Carbon Storage to Logging Disturbance in Canopy Layer of Natural Secondary Coniferous-Broadleaved Mixed Forest in Northeast China[J]. Scientia Silvae Sinicae, 2024, 60(7): 17-27.
表1
样地基本信息"
年份 Year | 纬度 Latitude(N) | 经度 Longitude(E) | 林分密度 Tree density/(tree·hm–2) | 胸高断面积 Basal area/m2 | 灌木层盖度 Shrub coverage(%) | 树高 Tree height/m | 胸径 DBH /cm | 土壤pH Soil pH-value |
2011 | 43°58′ | 127°44′ | 2 693 | 30.065 2 | 35 | 9.85±0.15 | 14.22±0.33 | 5.25 |
2013 | 43°58′ | 127°44′ | 3 350 | 30.474 5 | 45 | 10.41±0.20 | 14.50±0.41 | 5.03 |
2015 | 43°58′ | 127°44′ | 3 764 | 31.165 3 | 40 | 10.78±0.19 | 14.97±0.35 | 4.88 |
2018 | 43°58′ | 127°44′ | 3 921 | 31.298 6 | 40 | 11.36±0.21 | 15.03±0.45 | 4.93 |
2021 | 43°58′ | 127°44′ | 4 075 | 32.601 2 | 40 | 11.84±0.24 | 15.16±0.40 | 4.90 |
表2
植物物种多样性和群落加权平均性状值计算公式①"
项目Item | 指标Index | 计算公式Formula |
物种多样性Species diversity | 物种丰富度Species richness | |
功能多样性Functional diversity | 功能离散度Functional dispersion | |
系统发育多样性Phylogenetic diversity | ||
群落加权平均性状值Community weighted mean |
表3
多元线性模型中各变量对碳储量的影响及其相对解释量"
响应变量Response variables | 估计值Estimate | 置信区间Confidence interval | 相对贡献率Relative effect(%) | P |
采伐强度Cutting intensity | ?0.230 | ?0.348~?0.111 | 25 | 0.000 1 |
物种多样性Species diversity | 0.306 | 0.286~0.404 | 32 | 2.67E?09 |
功能多样性Functional diversity | 0.235 | 0.126~0.343 | 25 | 3.11E?05 |
系统发育多样性Phylogenetic diversity | 0.095 | ?0.003~0.193 | 10 | 0.059 |
最大树高加权性状值CWM.Hmax | 0.075 | ?0.023~0.183 | 7.9 | 0.179 |
木质密度加权性状值CWM.WD | 0.004 | ?0.104~0.114 | 0.1 | 0.936 |
表4
多元线性模型中各变量对碳增量的影响及其相对解释量"
响应变量Response variables | 估计值Estimate | 置信区间Confidence interval | 相对贡献率Relative effect(%) | P |
采伐强度Cutting intensity | ?0.041 | ?0.168~0.085 | 5 | 0.523 |
物种多样性Species diversity | 0.201 | 0.097~0.306 | 24 | 0.000 2 |
功能多样性Functional diversity | 0.211 | 0.095~0.327 | 25 | 0.000 4 |
系统发育多样性Phylogenetic diversity | 0.079 | ?0.026~0.183 | 9 | 0.142 |
最大树高加权性状值CWM.Hmax | 0.039 | 0.160~0.392 | 32 | 4.93E?06 |
木质密度加权性状值CWM.WD | 0.004 | ?0.078~0.156 | 5 | 0.514 |
表5
结构方程模型中各变量对碳储量、碳增量的直接效应、间接效应及总效应"
解释变量 Explanatory variables | 碳储量和碳增量的路径 Paths to effecting carbon storage and carbon storage increase | 标准化路径系数Standardized path coefficient | |
碳储量 Carbon storage | 碳增量 Carbon storage increase | ||
采伐强度 Thinning intensity | 直接效应Direct effect | ?0.229 | ?0.041 |
通过物种多样性的间接效应Indirect effect via SD | ?0.029 | ?0.02 | |
通过系统发育多样性的间接效应Indirect effect via PD | ?0.021 | ?0.017 | |
通过功能多样性的间接效应Indirect effect via FD | ?0.11 | ?0.113 | |
通过最大树高加权性状值的间接效应Indirect effect via CWM.Hmax | ?0.031 | ?0.099 | |
通过木质密度加权性状值的间接效应Indirect effect via CWM.WD | ?0.001 | ?0.017 | |
总效应Total effect | ?0.491 | ?0.307 | |
物种多样性 Species diversity | 直接效应Direct effect | 0.306 | 0.201 |
总效应Total effect | 0.306 | 0.201 | |
系统发育多样性 Phylogenetic diversity | 直接效应Direct effect | 0.095 | 0.079 |
总效应Total effect | 0.095 | 0.079 | |
功能多样性 Functional diversity | 直接效应Direct effect | 0.235 | 0.211 |
通过最大树高加权性状值的间接效应Indirect effect via CWM.Hmax | 0.008 | 0.037 | |
通过木质密度加权性状值的间接效应Indirect effect via CWM.WD | ?0.002 | — | |
总效应Total effect | 0.241 | 0.248 | |
最大树高加权性状值 CWM.Hmax | 直接效应Direct effect | 0.075 | 0.278 |
通过功能多样性的间接效应Indirect effect via FD | 0.027 | 0.03 | |
通过木质密度加权性状值的间接效应Indirect effect via CWM.WD | ?0.008 | ?0.011 | |
总效应Total effect | 0.094 | 0.297 | |
木质密度加权性状值 CWM.WD | 直接效应Direct effect | 0.004 | 0.039 |
通过功能多样性的间接效应Indirect effect via FD | 0.024 | — | |
通过最大树高加权性状值的间接效应Indirect effect via CWM.Hmax | ?0.03 | ?0.086 | |
总效应Total effect | ?0.002 | ?0.047 |
范春雨, 张春雨, 赵秀海. 择伐对吉林蛟河阔叶红松林群落结构及动态的影响. 生态学报, 2017, 37 (20): 6668- 6678. | |
Fan C Y, Zhang C Y, Zhao X H. Effects of selective harvest on community structure and dynamics in a mixed broadleaved Korean pine forest in Jiaohe, Jilin Province. Acta Ecologica Sinica, 2017, 37 (20): 6668- 6678. | |
耿 燕, 赵秀海, 安黎哲. 阔叶红松林乔木地上碳储量和碳增量对采伐强度的响应. 北京林业大学学报, 2022, 44 (10): 23- 32.
doi: 10.12171/j.1000-1522.20220403 |
|
Geng Y, Zhao X H, An L Z. Responses of tree aboveground carbon storage and carbon increment to logging intensity in a broadleaved Korean pine forest. Journal of Beijing Forestry University, 2022, 44 (10): 23- 32.
doi: 10.12171/j.1000-1522.20220403 |
|
郝珉辉, 代 莹, 岳庆敏, 等. 阔叶红松林功能多样性与森林碳汇功能关系. 北京林业大学学报, 2022, 44 (10): 68- 76.
doi: 10.12171/j.1000-1522.20220237 |
|
Hao M H, Dai Y, Yue Q M, et al. Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function. Journal of Beijing Forestry University, 2022, 44 (10): 68- 76.
doi: 10.12171/j.1000-1522.20220237 |
|
郝珉辉, 李晓宇, 夏梦洁, 等. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响. 林业科学, 2018, 54 (5): 1- 9.
doi: 10.11707/j.1001-7488.20180501 |
|
Hao M H, Li X Y, Xia M J, et al. Effects of tending felling on functional and phylogenetic structures in a multi-species temperate secondary forest at Jiaohe in Jilin Province. Scientia Silvae Sinicae, 2018, 54 (5): 1- 9.
doi: 10.11707/j.1001-7488.20180501 |
|
何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林12个树种生物量分配规律. 北京林业大学学报, 2016, 38 (4): 53- 62. | |
He H J, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China. Journal of Beijing Forestry University, 2016, 38 (4): 53- 62. | |
何怀江, 张忠辉, 张春雨, 等. 2019. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响. 林业科学, 55(2): 1−12. | |
He H J, Zhang Z H, Zhang C Y. 2019. Short-term effects of thinning intensity on stand growth and species diversity of mixed coniferous and broad-leaved forest in northeastern China. Scientia Silvae Sinicae, 55(2): 1−12. [in Chinese] | |
雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响. 林业科学, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis. Scientia Silvae Sinicae, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
詹美春, 官凤英, 晏颖杰, 等. 带状采伐对毛竹林林下植被物种多样性的影响. 生态学报, 2020, 40 (12): 4169- 4179. | |
Zhan M C, Guan F Y, Yan Y J, et al. Effects of strip harvesting on species diversity of undergrowth in bamboo (Phyllostachys edulis) forest. Acta Ecologica Sinica, 2020, 40 (12): 4169- 4179. | |
Aiba M, Kurokawa H, Onoda Y, et al. Context-dependent changes in the functional composition of tree communities along successional gradients after land-use change. Journal of Ecology, 2016, 104 (5): 1347- 1356.
doi: 10.1111/1365-2745.12597 |
|
Albani M, Medvigy D, Hurtt G C, et al. The contributions of landuse change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 2006, 12 (12): 2370- 2390.
doi: 10.1111/j.1365-2486.2006.01254.x |
|
Alexander H D, Mack M C, Goetz S, et al. Implications of increased deciduous cover on stand structure and above ground C pools of Alaskan boreal forests. Ecosphere, 2012, 3 (5): 1- 21. | |
Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 2009, 161 (2): 105- 121. | |
Bai J K, Meng Y C, Gou R K, et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan Island, China. Functional Ecology, 2021, 35 (3): 774- 786.
doi: 10.1111/1365-2435.13753 |
|
Besar N A, Suardi H, Phua M H, et al. Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests, 2020, 11 (2): 210.
doi: 10.3390/f11020210 |
|
Campbell J, Alberti G, Martin J, et al. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Forest Ecology and Management, 2009, 257 (2): 453- 463.
doi: 10.1016/j.foreco.2008.09.021 |
|
Cavender-Bares J, Kozak K H, Fine P V, et al. The merging of community ecology and phylogenetic biology. Ecology Letters, 2009, 12 (7): 693- 715.
doi: 10.1111/j.1461-0248.2009.01314.x |
|
Chen X L, Chen H Y H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Global Change Biology, 2019, 25 (4): 1482- 1492.
doi: 10.1111/gcb.14567 |
|
Chisholm R A, Muller- Landau H C, Abdul Rahman K, et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 2013, 101 (5): 1214- 1224.
doi: 10.1111/1365-2745.12132 |
|
De Avila A L, van der Sande M T, Dormann C F, et al. Disturbance intensity is a stronger driver of biomass recovery than remaining tree-community attributes in a managed Amazonian forest. Journal of Applied Ecology, 2018, 55 (4): 1647- 1657.
doi: 10.1111/1365-2664.13134 |
|
Dı́az S, Cabido M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 2001, 16 (11): 646- 655. | |
Dumitras cu M, Kucsicsa G, Dumitricăumitet al. 2020. Estimation of future changes in above ground forest carbon stock in Romania. A Prediction Based on Forest-Cover Pattern Scenario. Forests. 11(9): 914. | |
Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Fotis A T, Murphy S J, Ricart R D, et al. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 2018, 106 (2): 561- 570.
doi: 10.1111/1365-2745.12847 |
|
Fraser L H, Pither J, Jentsch A, et al. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349 (6245): 302- 305.
doi: 10.1126/science.aab3916 |
|
Geng Y, Yue Q, Zhang C, Zhao X, et al. Dynamics and drivers of above-ground biomass accumulation during recovery from selective harvesting in an uneven-aged forest. European Journal of Forest Research, 2021, 140 (5): 1163- 1178.
doi: 10.1007/s10342-021-01394-9 |
|
Grime J P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 1998, 86 (6): 902- 910.
doi: 10.1046/j.1365-2745.1998.00306.x |
|
Harvey B D, Leduc A, Gauthier S, et al. Stand-landscape integration in natural disturbance-based management of the southern boreal forest. Forest Ecology and Management, 2002, 155 (1/2/3): 369- 385. | |
He H, Zhang C, Zhao X, et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. Plos One, 2018, 13 (1): e0186226.
doi: 10.1371/journal.pone.0186226 |
|
Hu J, Herbohn J, Chazdon R L, et al. Long-term growth responses of three Flindersia species to different thinning intensities after selective logging of a tropical rainforest. Forest Ecology and Management, 2020, 476 (547): 118442. | |
Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574- 577.
doi: 10.1038/nature15374 |
|
Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6, 6707.
doi: 10.1038/ncomms7707 |
|
Liu X J, Trogisch S, He J S, et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285 (1885): 20181240.
doi: 10.1098/rspb.2018.1240 |
|
Loreau M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 2000, 91 (1): 3- 17.
doi: 10.1034/j.1600-0706.2000.910101.x |
|
Morin X, Fahse L, Scherer-Lorenzen M, et al. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 2011, 14 (12): 1211- 1219.
doi: 10.1111/j.1461-0248.2011.01691.x |
|
Mouillot D, Graham N A, Villéger S, et al. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 2013, 28 (3): 167- 177. | |
Olson J S. 1983. Carbon in live vegetation of major world ecosystems. Washington: US Department of Energy. | |
Poorter L, van der Sande M T, Thompson J, et al. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 2015, 24 (11): 1314- 1328.
doi: 10.1111/geb.12364 |
|
Raihan A, Said M N M. Cost–benefit analysis of climate change mitigation measures in the forestry sector of peninsular Malaysia. Earth Systems and Environment, 2022, 6 (2): 405- 419.
doi: 10.1007/s41748-021-00241-6 |
|
Schroeder P. 1991. Can intensive management increase carbon storage in forests? Environmental Management, 15(4): 475–481. | |
Storch F, Kändler G, Bauhus J. Assessing the influence of harvesting intensities on structural diversity of forests in south-west Germany. Forest Ecosystems, 2019, 6, 40.
doi: 10.1186/s40663-019-0199-6 |
|
Tucker C M, Davies T J, Cadotte M W, et al. On the relationship between phylogenetic diversity and trait diversity. Ecology, 2018, 99 (6): 1473- 1479.
doi: 10.1002/ecy.2349 |
|
Xie L, Chen H, Wei L, et al. Scale-dependent effects of species diversity on aboveground biomass and productivity in a subtropical broadleaved forest on Mt. Huangshan. Ecology and Evolution, 2023, 13 (2): e9786.
doi: 10.1002/ece3.9786 |
|
Zanne A E, Tank D C, Cornwell W K, et al. Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89- 92.
doi: 10.1038/nature12872 |
|
Zhang S B, Ferry Slik J W, Zhang J L, et al. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecology and Biogeography, 2011, 20 (2): 241- 250.
doi: 10.1111/j.1466-8238.2010.00582.x |
|
Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 2015, 103 (5): 1245- 1252.
doi: 10.1111/1365-2745.12425 |
|
Zhang Y Z, Liang S L. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China. Global Change Biology, 2014, 20 (8): 2596- 2606.
doi: 10.1111/gcb.12588 |
[1] | 刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径[J]. 林业科学, 2024, 60(4): 157-172. |
[2] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[3] | 劳万里,李晓玲,段新芳. 木竹产品碳足迹评价研究进展[J]. 林业科学, 2024, 60(1): 142-150. |
[4] | 柳帅,张德旭,张安安,李哲,龙文兴,臧润国,张志东,陈远,冯广,陈玉凯. 海南长臂猿现有天然林栖息地与松树林潜在栖息地的植物物种多样性比较[J]. 林业科学, 2023, 59(7): 115-127. |
[5] | 曾伟生,蒲莹,杨学云,易善军. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析[J]. 林业科学, 2023, 59(3): 21-30. |
[6] | 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力[J]. 林业科学, 2023, 59(3): 54-64. |
[7] | 郭泽鑫,胡中岳,曹聪,刘萍. 广东主要森林类型林分生物量和碳储量模型研建[J]. 林业科学, 2023, 59(12): 37-50. |
[8] | 田惠玲,朱建华,何潇,陈新云,简尊吉,李宸宇,郭学媛,黄国胜,肖文发. 基于随机森林模型的东北三省乔木林生物质碳储量预测[J]. 林业科学, 2022, 58(4): 40-50. |
[9] | 刘晨,张春雨,赵秀海. 采伐干扰对吉林蛟河针阔混交林生产力稳定性的影响[J]. 林业科学, 2022, 58(3): 1-9. |
[10] | 侯志康,曾松伟,莫路锋,周宇峰. 基于GA-BP神经网络的雷竹林CO2浓度反演[J]. 林业科学, 2022, 58(2): 42-48. |
[11] | 王雪峰,陈珠琳,管青军,刘嘉政,王甜,袁莹. 基于林内图像的单位面积碳储量估计方法[J]. 林业科学, 2021, 57(1): 105-112. |
[12] | 王振鹏,陈金磊,李尚益,张仕吉,方晰. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5): 19-28. |
[13] | 武金翠,周军,张宇,余晓燕,石雷,漆良华. 毛竹林固碳增汇价值的动态变化:以福建省为例[J]. 林业科学, 2020, 56(4): 181-187. |
[14] | 朱万泽. 成熟森林固碳研究进展[J]. 林业科学, 2020, 56(3): 117-126. |
[15] | 王京,金屿淞,黄勇杰,李慧仁,刘芳蕊,刘学爽,王立中,刘丹丹,林英华. 采伐胁迫对大兴安岭针阔混交林地表节肢动物群落的长期影响[J]. 林业科学, 2020, 56(12): 177-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||