林业科学 ›› 2024, Vol. 60 ›› Issue (10): 21-28.doi: 10.11707/j.1001-7488.LYKX20230606
• 研究论文 • 上一篇
杨豆1(),刘超华1,李凤巧1,唐罗忠2,田野2,方升佐2,李孝刚1,*
收稿日期:
2023-12-11
出版日期:
2024-10-25
发布日期:
2024-11-05
通讯作者:
李孝刚
E-mail:1659484102@qq.com
基金资助:
Dou Yang1(),Chaohua Liu1,Fengqiao Li1,Luozhong Tang2,Ye Tian2,Shengzuo Fang2,Xiaogang Li1,*
Received:
2023-12-11
Online:
2024-10-25
Published:
2024-11-05
Contact:
Xiaogang Li
E-mail:1659484102@qq.com
摘要:
目的: 比较2个密度杨树人工林的土壤团聚体和固碳差异,揭示其土壤固碳过程,为制定有效的可持续人工林经营措施提供理论基础。方法: 采集高密度(400 株·hm?2)和低密度(278 株·hm?2)杨树人工林(16 年)表层土壤,利用最适湿度干筛法将土壤团聚体分为小(<0.25 mm)、中(0.25~2 mm)、大(>2 mm)粒级,测定各粒级中活性、慢性和惰性有机碳含量及其矿化速率。结果: 与低密度相比,高密度杨树人工林土壤的中、小团聚体组成占比显著提升,大团聚体组成占比降低,分别为1.06%、21.92%和77.02%。2个密度杨树人工林的各粒级土壤团聚体的有机碳组分均存在显著差异,其中高密度人工林土壤各粒级活性和慢性有机碳含量较高,而惰性有机碳含量在<0.25 mm和0.25~2 mm粒级中较低。室内培养试验发现,与低密度人工林相比,高密度人工林土壤各粒级团聚体的碳矿化速率在整个培养阶段普遍较低,说明保守的土壤微生物碳代谢策略是高密度林土壤有机碳积累的关键。林分密度对土壤团聚体粒级分布及活性和慢性有机碳含量有显著影响,而对土壤惰性有机碳含量影响不显著;其中高密度林的土壤密度降低导致了活性和慢性有机碳含量的积累。结论: 合理调节林分密度是影响人工林土壤团聚体形成和有机碳组分的重要营林措施。高密度杨树人工林土壤的密度降低和保守的土壤碳代谢能力将有利于土壤碳固存。
中图分类号:
杨豆,刘超华,李凤巧,唐罗忠,田野,方升佐,李孝刚. 苏北平原2个密度杨树人工林土壤团聚体及固碳差异[J]. 林业科学, 2024, 60(10): 21-28.
Dou Yang,Chaohua Liu,Fengqiao Li,Luozhong Tang,Ye Tian,Shengzuo Fang,Xiaogang Li. Soil Aggregates and Carbon Sequestration Differences between Two Densities of Poplar Plantation Forests in the North Jiangsu Plain Area[J]. Scientia Silvae Sinicae, 2024, 60(10): 21-28.
表1
2个密度杨树人工林土壤理化性质和团聚体组成特征①"
造林密度 Stand density/ (tree·hm?2) | 土壤理化性质 Soil physical and chemical properties | 土壤团聚体绝对含量(占比) Soil aggregate absolute content (percentage) /g·kg?1 (%) | ||||||||
pH | 土壤密度 Bulk density/ (g·cm?3) | 全碳 Total carbon/ (g·kg?1) | 全氮 Total nitrogen/ (g·kg?1) | 全磷 Total phosphorus/ (g·kg?1) | 全钾 Total potassium/ (g·kg?1) | 小团聚体 Small aggregate <0.25 mm | 中团聚体 Middle aggregate 0.25~2 mm | 大团聚体 Large aggregate >2 mm | ||
高密度 Higher density | 7.64±0.06a | 1.13±0.01b | 17.95±0.52a | 1.86±0.04a | 0.22±0.02a | 17.59±0.26b | 9.23±1.187a (1.06±0.13a) | 189.96±8.258a (21.92±0.75a) | 666.56±4.420 b (77.02±0.78 b) | |
低密度 Lower density | 7.10±0.10b | 1.26±0.01a | 15.21±0.32b | 1.66±0.02b | 0.21±0.01a | 18.77±0.36a | 4.93±0.741b (0.57±0.08b) | 148.67±6.410b (17.06±0.69b) | 717.61±5.048 a (82.38±0.76 a) |
鲍士旦. 2000. 土壤农化分析. 3版.北京: 中国农业出版社. | |
Bao S D. 2000. Soil agricultural chemistry analysis.3rd ed. Beijing: China Agriculture Press. [in Chinese] | |
曹寒冰, 谢钧宇, 刘 菲, 等. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性. 中国农业科学, 2021, 54 (21): 4611- 4622. | |
Cao H B, Xie J Y, Liu F, et al. Mineralization characteristics of soil organic carbon and its temperature sensitivity in wheat field under film mulching. Scientia Agricultura Sinica, 2021, 54 (21): 4611- 4622. | |
曹鹏鹤, 徐 璇, 孙杰杰, 等. 林分密度和种植点配置对杨树各器官非结构性碳水化合物的影响. 浙江农林大学学报, 2022, 39 (2): 297- 306. | |
Cao P H, Xu X, Sun J J, et al. Effects of stand density and spacing configuration on the non-structural carbohydrate in different organs of poplar. Journal of Zhejiang A&F University, 2022, 39 (2): 297- 306. | |
陈 皓, 娄梦函, 徐 轩, 等. 奶牛粪沼液对小麦-玉米轮作土壤团聚体有机碳组分的影响. 南京信息工程大学学报(自然科学版), 2022, 14 (1): 50- 61. | |
Chen H, Lou M H, Xu X, et al. Effects of digested dairy slurry application on soil aggregates and their organic carbon composition in wheat and maize rotation system. Journal of Nanjing University of Information Science & Technology, 2022, 14 (1): 50- 61. | |
鄂晓伟. 2020. 杨树人工林林下植被对土壤有机碳动态的影响. 南京: 南京林业大学. | |
E X W. 2020. Effects of understory vegetation on the pool and dynamics of soil organic carbon in poplar plantations. Nanjing : Nanjing Forestry University. [in Chinese] | |
谷丽萍, 郭永清, 泽桑梓, 等. 云南干热河谷不同密度麻疯树人工林土壤活性有机碳特征. 西北林学院学报, 2014, 29 (2): 26- 31. | |
Gu L P, Guo Y Q, Ze S Z, et al. Characteristics of soil active organic carbon in Jatropha curcas plantations with different densities in dry-hot valley area of Yunnan Province. Journal of Northwest Forestry University, 2014, 29 (2): 26- 31. | |
辜 翔, 张仕吉, 项文化, 等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征. 植物生态学报, 2016, 40 (10): 1064- 1076.
doi: 10.17521/cjpe.2015.0412 |
|
Gu X, Zhang S J, Xiang W H, et al. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China. Chinese Journal of Plant Ecology, 2016, 40 (10): 1064- 1076.
doi: 10.17521/cjpe.2015.0412 |
|
郝江勃, 乔 枫, 蔡子良. 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征. 生态环境学报, 2019, 28 (2): 245- 251. | |
Hao J B, Qiao F, Cai Z L. Seasonal dynamics of soil labile organic carbon and its fractions in subtropical evergreen broadleaved forest. Ecology and Environmental Sciences, 2019, 28 (2): 245- 251. | |
刘超华, 李凤巧, 廖杨文科, 等. 人工林对土壤地力的影响过程及其调控研究进展. 土壤学报, 2023, 60 (3): 644- 656. | |
Liu C H, Li F Q, Liao Y W K, et al. Research progress on effects and regulation of plantation on soil fertility. Acta Pedologica Sinica, 2023, 60 (3): 644- 656. | |
柳思勉, 田大伦, 项文化, 等. 间伐强度对人工杉木林地表径流的影响. 生态学报, 2015, 35 (17): 5769- 5775. | |
Liu S M, Tian D L, Xiang W H, et al. The impacts of thinning intensity on overland flow in a Chinese fir plantation. Acta Ecologica Sinica, 2015, 35 (17): 5769- 5775. | |
刘新坤, 孙盛凯, 段霄汉, 等. 耕作方式对土壤团聚体微生物及有机碳矿化的影响研究进展及展望. 中国农学通报, 2023, 39 (7): 88- 94. | |
Liu X K, Sun S K, Duan X H, et al. Effects of tillage methods on soil aggregate microorganisms and organic carbon mineralization: a review. Chinese Agricultural Science Bulletin, 2023, 39 (7): 88- 94. | |
刘 悦, 谢玲芝, 张彦东, 等. 不同密度水曲柳人工林细根生物量对邻近树木胸径和距离的响应. 林业科学, 2021, 57 (10): 15- 22. | |
Liu Y, Xie L Z, Zhang Y D, et al. Responses of fine root biomass to diameters of and distances to the neighboring trees of Fraxinus mandschurica plantation with different stocking densities. Scientia Silvae Sinicae, 2021, 57 (10): 15- 22. | |
任荣秀, 杜章留, 孙义亨, 等. 华北低丘山地不同土地利用方式下土壤团聚体及其有机碳分布特征. 生态学报, 2020, 40 (19): 6991- 6999. | |
Ren R X, Du Z L, Sun Y H, et al. Soil aggregate and its organic carbon distribution characteristics at different land use patterns in hilly areas of north China. Acta Ecologica Sinica, 2020, 40 (19): 6991- 6999. | |
孙 嘉, 王海燕, 丁国栋, 等. 不同密度华北落叶松人工林土壤理化性质研究. 林业资源管理, 2011, (1): 62- 66. | |
Sun J, Wang H Y, Ding G D, et al. Soil physico-chemical properties under Larix principis-rupprechtii plantations of different stand densities. Forest Resources Management, 2011, (1): 62- 66. | |
王丹阳. 2021. 华北落叶松人工林密度对土壤团聚体有机碳矿化的影响. 北京: 北京林业大学. | |
Wang D Y. 2021. Effects of density of Larix principis-rupprechtii plantation on organic carbon mineralization of soil aggregate. Beijing: Beijing Forestry University. [in Chinese] | |
王晓荣, 胡兴宜, 唐万鹏, 等. 不同林分密度杨树人工林的固碳释氧和积累营养物质研究. 湖北林业科技, 2020, 49 (3): 1- 4. | |
Wang X R, Hu X Y, Tang W P, et al. Study on carbon fixation, oxygen release and nutrient accumulation in poplar plantation with different stand densities. Hubei Forestry Science and Technology, 2020, 49 (3): 1- 4. | |
王心怡, 周 聪, 冯文瀚, 等. 不同林龄杉木人工林土壤团聚体及其有机碳变化特征. 水土保持学报, 2019, 33 (5): 126- 131. | |
Wang X Y, Zhou C, Feng W H, et al. Changes of soil aggregates and its organic carbon in Chinese fir plantations with different forest ages. Journal of Soil and Water Conservation, 2019, 33 (5): 126- 131. | |
王亚飞, 贺曰林, 杨红青, 等. 灌溉施肥对杨树人工林林木及地力效应研究进展. 世界林业研究, 2023, 36 (5): 63- 69. | |
Wang Y F, He Y L, Yang H Q, et al. Research progress in effect of irrigation and fertilization on tree growth and land fertility in Populus plantation. World Forestry Research, 2023, 36 (5): 63- 69. | |
燕亚飞, 田 野, 方升佐, 等. 不同密度杨树人工林的外源无机氮输入及土壤无机氮库研究. 南京林业大学学报(自然科学版), 2015, 39 (4): 69- 74. | |
Yan Y F, Tian Y, Fang S Z, et al. External nitrogen input and soil inorganic nitrogen pool in different stands of poplar plantations. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39 (4): 69- 74. | |
杨 芳, 段惠敏, 段建军, 等. 温度对黑色石灰土原土及不同粒径土壤颗粒有机碳矿化的影响. 河南农业科学, 2019, 48 (2): 68- 76. | |
Yang F, Duan H M, Duan J J, et al. Effects of temperature on organic carbon mineralization of rendzina and different soil particles. Journal of Henan Agricultural Sciences, 2019, 48 (2): 68- 76. | |
曾伟生, 蒲 莹, 杨学云, 等. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析. 林业科学, 2023, 59 (3): 21- 30. | |
Zeng W S, Pu Y, Yang X Y, et al. Growth models and its climate-driven analysis of carbon storage in tree layers of five major plantation types in China. Scientia Silvae Sinicae, 2023, 59 (3): 21- 30. | |
张 杰, 黄金生, 刘 佳, 等. 秸秆、木质素及其生物炭对潮土CO2释放及有机碳含量的影响. 农业环境科学学报, 2015, 34 (2): 401- 408. | |
Zhang J, Huang J S, Liu J, et al. Carbon dioxide emissions and organic carbon contents of fluvo-aquic soil as influenced by straw and lignin and their biochars. Journal of Agro-Environment Science, 2015, 34 (2): 401- 408. | |
周 娅, 陈宇轩, 邹 瑞, 等. 北京八达岭不同密度油松土壤团聚体特征研究. 西南林业大学学报, 2016, 36 (2): 25- 30. | |
Zhou Y, Chen Y X, Zou R, et al. Effect of stand density on characteristics of soil aggregates in Pinus tabuliformis plantation in Badaling area, Beijing. Journal of Southwest Forestry University, 2016, 36 (2): 25- 30. | |
Bai Y X, Zhou Y C, He H Z. Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma, 2020, 376, 114548.
doi: 10.1016/j.geoderma.2020.114548 |
|
Bossio D A, Cook-Patton S C, Ellis P W, et al. The role of soil carbon in natural climate solutions. Nature Sustainability, 2020, 3, 391- 398.
doi: 10.1038/s41893-020-0491-z |
|
Chen S P, Wang W, Xu W T, et al. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4027- 4032. | |
Gao G N, Huang X M, Xu H C, et al. Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China. Forest Ecosystems, 2022, 9, 100078.
doi: 10.1016/j.fecs.2022.100078 |
|
Ghosh A, Bhattacharyya R, Meena M C, et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil and Tillage Research, 2018, 177, 134- 144.
doi: 10.1016/j.still.2017.12.006 |
|
Ghosh B N, Meena V S, Singh R J, et al. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas. Ecological Indicators, 2019, 105, 415- 424.
doi: 10.1016/j.ecolind.2018.02.050 |
|
Gupta V V S R, Germida J J. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biology and Biochemistry, 2015, 80, A3- A9.
doi: 10.1016/j.soilbio.2014.09.002 |
|
He Y Q, Zhang Q C, Jiang C Y, et al. Mixed planting improves soil aggregate stability and aggregate-associated C-N-P accumulation in subtropical China. Frontiers in Forests and Global Change, 2023, 6, 1141953.
doi: 10.3389/ffgc.2023.1141953 |
|
Hong S B, Ding J Z, Kan F, et al. Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen. Nature Communications, 2023, 14, 3196.
doi: 10.1038/s41467-023-38911-w |
|
Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304 (5677): 1623- 1627.
doi: 10.1126/science.1097396 |
|
Li X, Ramos Aguila L C, Wu D H, et al. Carbon sequestration and storage capacity of Chinese fir at different stand ages. Science of the Total Environment, 2023, 904, 166962.
doi: 10.1016/j.scitotenv.2023.166962 |
|
Mustafa A, Xu M G, Ali Shah S A, et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management, 2020, 270, 110894.
doi: 10.1016/j.jenvman.2020.110894 |
|
Rovira P, Vallejo V. R. Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Communications in Soil Science and Plant Analysis, 2000, 31 (1/2): 81- 100.
doi: 10.1080/00103620009370422 |
|
Six J, Ogle S M, Jay breidt F, et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 2004, 10 (2): 155- 160.
doi: 10.1111/j.1529-8817.2003.00730.x |
|
Wang Q T, Zhang Y, Zhang P P, et al. Nitrogen deposition induces a greater soil C sequestration in the rhizosphere than bulk soil in an alpine forest. Science of the Total Environment, 2023, 875, 162701.
doi: 10.1016/j.scitotenv.2023.162701 |
|
Wei X R, Ma T E, Wang Y H, et al. Long-term fertilization increases the temperature sensitivity of OC mineralization in soil aggregates of a highland agroecosystem. Geoderma, 2016, 272, 1- 9.
doi: 10.1016/j.geoderma.2016.02.027 |
[1] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[2] | 竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32. |
[3] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[4] | 韩新生,许浩,蔡进军,董立国,郭永忠,王月玲,万海霞,安钰. 宁夏黄土区稀疏带状山杏人工林土壤湿度动态与影响因素[J]. 林业科学, 2024, 60(4): 79-90. |
[5] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[6] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[7] | 李鑫豪,张德怀,张赵森,李建,曹俊,隗骥超,吴晓朦,田赟,刘鹏,于海群. 北京密云油松人工林碳通量组分季节变化及其对环境因子的响应[J]. 林业科学, 2023, 59(7): 35-44. |
[8] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[9] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
[10] | 李平平,王彦辉,段文标,王依瑞,于澎涛,甄理,李志鑫,尚会军,史再军,于艺鹏. 黄土高原刺槐人工林立地指数变化及评价[J]. 林业科学, 2023, 59(4): 18-31. |
[11] | 张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45. |
[12] | 刘文浩,王晓,段文标,于澎涛,王彦辉,于艺鹏. 西宁市油松人工林生长季水量平衡特征[J]. 林业科学, 2023, 59(4): 46-56. |
[13] | 解雅麟,雷相东,曾伟生. 基于3-PGmix过程模型的落叶松人工林生长过程表编制[J]. 林业科学, 2023, 59(12): 87-104. |
[14] | 赵蕊蕊,刘勇,王凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响[J]. 林业科学, 2023, 59(11): 1-11. |
[15] | 齐丽华,邹献武,吕斌,付跃进,唐利娜,朱黎明,陈倩,刘波,李伯涛. 中国主要人工林木材的VOCs组成及气味特征[J]. 林业科学, 2023, 59(11): 103-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||