林业科学 ›› 2025, Vol. 61 ›› Issue (8): 219-230.doi: 10.11707/j.1001-7488.LYKX20240427
收稿日期:
2024-07-09
出版日期:
2025-08-25
发布日期:
2025-09-02
通讯作者:
刘志理
E-mail:liuzl2093@126.com
基金资助:
Kaibo Wang,Guangze Jin,Zhili Liu*()
Received:
2024-07-09
Online:
2025-08-25
Published:
2025-09-02
Contact:
Zhili Liu
E-mail:liuzl2093@126.com
摘要:
目的: 基于东北不同阔叶树种,探讨植物资源获取型与防御型性状的相关性及其驱动因素,揭示木本植物资源获取能力与防御能力的关联,解析木本植物对环境的动态适应机制,为森林生态系统管理提供科学依据。方法: 测定温带森林中5种不同耐荫性阔叶树种白桦、水曲柳、裂叶榆、紫椴、五角槭的叶片、新枝、老枝在3个不同生活史阶段(幼苗、幼树、成年树)的20个植物功能性状,将其划分为资源获取型和防御型性状,探讨木本植物2类性状的相互关联及影响因子。结果: 叶片资源获取能力与植株地上部分防御能力的相关性较弱,不同生活阶段资源获取能力与防御能力的相关性存在差异。幼苗期间,2种能力存在协作关系(夹角< 90°);幼树期间,2种能力存在解耦关系(夹角≈ 90°);成年树阶段,2种能力存在权衡关系(夹角> 90°)。综合考虑环境因子(土壤养分、土壤pH、土壤含水率)和植物特性(生活史阶段、耐荫性)对植物资源获取型和防御型性状的影响时,环境因子的影响(PC1 56%、PC2 73%)大于植物特性的影响(PC1 44%、PC2 27%)。结论: 植物在不同生活史阶段对资源获取与防御的协调策略具有阶段性变化,环境因子是主要驱动因素,但植物特性亦不容忽视。
中图分类号:
王凯波,金光泽,刘志理. 温带阔叶树种不同生活史阶段的资源获取能力和防御能力关系的变化[J]. 林业科学, 2025, 61(8): 219-230.
Kaibo Wang,Guangze Jin,Zhili Liu. Changes of Resource Acquisition and Defense Capabilities of Temperate Broadleaf Tree Species at Different Life History Stages[J]. Scientia Silvae Sinicae, 2025, 61(8): 219-230.
表1
植物叶片、新枝、老枝功能性状及其类别"
器官 Organ | 功能性状 Functional traits | 单位 Units | 生态学意义 Ecological meaning | 生态策略 Ecological strategy |
叶片 Leaf | 叶绿素含量 Chlorophyll content | — | 与植物光合速率相关,可表征植物的光合能力、生长状况以及胁迫状况 Correlates with plant photosynthetic rate and characterizes plant photosynthetic capacity, growth, and stress conditions | 资源获取 Resource acquisition |
比叶质量 Leaf mass per area | g·cm?2 | 叶片结构特征的综合指标,可表征植物的资源获取能力及对环境的响应策略 A composite index of leaf structural characteristics that characterizes the resource acquisition capacity of plants and their response strategies to the environment | 资源获取 Resource acquisition | |
碳含量 Carbon content | g·kg?1 | 构成生命体的基本元素,维持植物生长发育和代谢过程的关键元素,植物元素含量的变异及分配规律可表征植物对环境的响应与适应机制 The basic elements that constitute living organisms, the key elements that maintain plant growth, development and metabolic processes, and the variation and distribution patterns of plant elemental content can characterize the plant’s response and adaptation mechanisms to the environment | 资源获取 Resource acquisition | |
氮含量 Nitrogen content | g·kg?1 | 资源获取 Resource acquisition | ||
磷含量 Phosphorus content | g·kg?1 | 资源获取 Resource acquisition | ||
总酚含量 Total phenolic content | g·kg?1 | 能够抵御外界生物(草食动物啃食)和非生物(低温)胁迫,在植物生长、发育和防御中发挥重要作用 Able to withstand external biotic (herbivore nibbling) and abiotic (low temperatures) stresses and plays an important role in plant growth, development and defense | 防御 Defense | |
单宁含量 Tannin content | g·kg?1 | 防御 Defense | ||
类黄酮含量 Flavonoid content | g·kg?1 | 防御 Defense | ||
新枝 New twig | 碳含量 Carbon content | g·kg?1 | 构成生命体的基本元素,维持植物生长发育和代谢过程的关键元素,植物元素含量的变异及分配规律可表征植物对环境的响应与适应机制 The basic elements that constitute living organisms, the key elements that maintain plant growth, development and metabolic processes, and the variation and distribution patterns of plant elemental content can characterize the plant’s response and adaptation mechanisms to the environment | 资源获取 Resource acquisition |
氮含量 Nitrogen content | g·kg?1 | 资源获取 Resource acquisition | ||
磷含量 Phosphorus content | g·kg?1 | 资源获取 Resource acquisition | ||
总酚含量 Total phenolic content | g·kg?1 | 能够抵御外界生物(草食动物啃食)和非生物(低温)胁迫,在植物生长、发育和防御中发挥重要作用 Able to withstand external biotic (herbivore nibbling) and abiotic (low temperatures) stresses and plays an important role in plant growth, development and defense | 防御 Defense | |
单宁含量 Tannin content | g·kg?1 | 防御 Defense | ||
类黄酮含量 Flavonoid content | g·kg?1 | 防御 Defense | ||
老枝 Old branch | 碳含量 Carbon content | g·kg?1 | 构成生命体的基本元素,维持植物生长发育和代谢过程的关键元素,植物元素含量的变异及分配规律可表征植物对环境的响应与适应机制 The basic elements that constitute living organisms, the key elements that maintain plant growth, development and metabolic processes, and the variation and distribution patterns of plant elemental content can characterize the plant’s response and adaptation mechanisms to the environment | 资源获取 Resource acquisition |
氮含量 Nitrogen content | g·kg?1 | 资源获取 Resource acquisition | ||
磷含量 Phosphorus content | g·kg?1 | 资源获取 Resource acquisition | ||
总酚含量 Total phenolic content | g·kg?1 | 能够抵御外界生物(草食动物啃食)和非生物(低温)胁迫,在植物生长、发育和防御中发挥重要作用 Able to withstand external biotic (herbivore nibbling) and abiotic (low temperatures) stresses and plays an important role in plant growth, development and defense | 防御 Defense | |
单宁含量 Tannin content | g·kg?1 | 防御 Defense | ||
类黄酮含量 Flavonoid content | g·kg?1 | 防御 Defense |
图1
各性状间的相关性 SPAD:叶绿素含量指数 Chlorophyll content (soil and plant analyzer development);LMA:比叶质量 Leaf mass per area;LC:叶片碳含量 Leaf carbon content;LN:叶片氮含量 Leaf nitrogen content;LP:叶片磷含量 Leaf phosphorus content;LTP:叶片总酚含量 Leaf total phenolic content;LTA:叶片单宁含量 Leaf tannin content;LFLA:叶片类黄酮含量 Leaf flavonoid content;NC:新枝碳含量 New twig carbon content;NN:新枝氮含量 New twig nitrogen content;NP:新枝磷含量 New twig phosphorus content;NTP:新枝总酚含量 New twig total phenolic content;NTA:新枝单宁含量 New twig tannin content;NFLA:新枝类黄酮含量 New twig flavonoid content;OC:老枝碳含量 Old branch carbon content;ON:老枝氮含量 Old branch nitrogen content;OP:老枝磷含量 Old branch phosphorus content;OTP:老枝总酚含量 Old branch total phenolic content;OTA:老枝单宁含量 Old branch tannin content;OFLA:老枝类黄酮含量Old branch flavonoid content。线条的粗细代表相关性的强度,圆圈大小代表值的大小。The thickness of the line represents the strength of the correlation, the circle size indicates the degree value."
图2
资源获取型与防御型性状间的主成分分析 a:幼苗阶段不同耐荫性树种资源获取与防御型性状的主成分分析结果 Principal component analysis results of resource acquisition and defense traits of different negative tolerant tree species at seedling stage;b:幼树阶段不同耐荫性树种资源获取与防御型性状的主成分分析结果 Principal component analysis results of resource acquisition and defense traits of different negative tolerant tree species at sapling stage;c:成年树阶段不同耐荫性树种资源获取与防御型性状的主成分分析结果 Principal component analysis results of resource acquisition and defense traits of different negative tolerant tree species in mature tree stage。SPAD:叶绿素含量指数Chlorophyll content (soil and plant analyzerdevelopment);LMA:比叶质量 Leaf mass per area;LC:叶片碳含量 Leaf carbon content;LN:叶片氮含量 Leaf nitrogen content;LP:叶片磷含量 Leaf phosphorus content;LTP:叶片总酚含量 Leaf total phenolic content;LTA:叶片单宁含量 Leaf tannin content;LFLA:叶片类黄酮含量 Leaf flavonoid content;NC:新枝碳含量 New twig carbon content;NN:新枝氮含量 New twig nitrogen content;NP:新枝磷含量 New twig phosphorus content;NTP:新枝总酚含量 New twig total phenolic content;NTA:新枝单宁含量 New twig tannin content;NFLA:新枝类黄酮含量 New twig flavonoid content;OC:老枝碳含量 Old branch carbon content;ON:老枝氮含量 Old branch nitrogen content;OP:老枝磷含量 Old branch phosphorus content;OTP:老枝总酚含量 Old branch total phenolic content;OTA:老枝单宁含量 Old branch tannin content;OFLA:老枝类黄酮含量 Old branch flavonoid content。其中,蓝色荫影代表不耐荫树种(白桦、水曲柳)95%的置信区间,黄色荫影代表耐荫树种(裂叶榆、紫椴、五角槭)95%的置信区间。若性状间夹角小于90°,正相关;若性状间夹角等于90°,不相关;若性状间夹角大于90°,负相关。Among them, the blue shade represents the 95% confidence interval of the shad intolerant tree species (B. platyphylla, F. mandshurica), the yellow shade represents the 95% confidence interval of the shad tolerant tree species (U. laciniata, T. amurensis, A. pictum subsp. mono). If the angle between traits is less than 90°, positive correlation;if the angle between traits is equal to 90°, no correlation;if the angle between traits is greater than 90°, negative correlation."
图3
东北典型阔叶树种不同生活史阶段的资源获取能力和防御能力的相关性及影响因素 a:幼苗阶段资源获取能力和防御能力表现为协作关系 Indicates that resource acquisition ability and defense ability in seedling stage show cooperative relationship;b:幼树阶段资源获取能力和防御能力不存在相关性 Indicates that there is no correlation between resource acquisition ability and defense ability at the sapling stage;c:成年树阶段资源获取能力和防御能力表现为权衡关系 Ndicates that resource acquisition ability and defense ability in adult tree stage show a trade-off relationship."
图4
环境因子与植物特性对性状PC1和PC2得分的影响 a: 整个生活史PC1 Whole life history PC1;b: 整个生活史 PC2 Whole life history PC2;c: 幼苗PC1 Seeding PC1;d: 幼树PC1 Sapling PC1;e: 幼树PC2 Sapling PC2;f: 成年树PC1 Mature tree PC1. ST:植物耐荫性 Plant shade-tolerance;DBH:树木胸径 The diameter at breast height;SW:土壤含水率 Soil water; SC:土壤碳含量 Soil carbon content;SP:土壤磷含量 Soil phosphorus content;SC/SN:土壤碳氮含量之比Soil carbon content/ ratio of soil carbon to nitrogen content。图中展示模型预测的平均参数估计值(标准化回归系数)和95%的相关置信区间。*: P<0.05;**: P<0.01;***: P<0.001。彩色条形代表环境因子和植物特性的相对解释率。We show the averaged parameter estimates (standardized regression coefficients) of model predictors and the associated 95% confidence intervals. The P-value of each predictor is given: *, P<0.05;**, P<0.01;***, P<0.001.color bars represent the relative interpretation rates of environmental factors and plant characteristics."
表1
样树状况以及不同生活史阶段叶、新枝、老枝性状基本信息①"
物种 Species | 生活史 Life history | 器官 Organ | SW/ (g·g?1) | SC/ (g·kg?1) | SN/ (g·kg?1) | SP / (g·kg?1) | pH | H / m | DBH/ cm | SPAD | LMA / (g·cm?2) | C / (g·kg?1) | N / (g·kg?1) | P / (g·kg?1) | TP/ (g·kg?1) | TA/ (g·kg?1) | FLA/ (g·kg?1) |
白桦 B. platyphylla | 幼苗 Seedling n=10 | L | 0.91±0.45 | 62.57±24.72 | 5.47±1.38 | 1.06±0.21 | 4.31±0.12 | 6.30±0.79 | 5.13±0.25 | 39.33±2.48 | 0.004±0.001 | 465.38±28.78 | 40.15±8.38 | 4.02±1.17 | 28.57±11.05 | 24.02±10.84 | 95.2±21.65 |
NT | — | — | 487.42±26.18 | 20.57±3.16 | 1.31±0.10 | 38.82±4.15 | 34.08±3.84 | 228.61±33.91 | |||||||||
OB | — | — | 410.21±27.13 | 11.12±1.83 | 1.16±0.14 | 39.76±4.37 | 36.06±3.98 | 193.55±21.90 | |||||||||
幼树 Sapling n=10 | L | 1.23±0.44 | 138.41±39.00 | 9.28±2.11 | 1.24±0.26 | 4.33±0.32 | 17.42±1.07 | 18.83±1.37 | 38.90±2.61 | 0.003±0.001 | 474.11±34.61 | 28.43±2.07 | 1.90±0.43 | 34.92±12.66 | 31.01±12.30 | 101.93±19.27 | |
NT | — | — | 484.72±18.64 | 18.61±5.92 | 1.11±0.10 | 43.69±5..26 | 38.56±4.81 | 223.20±30.81 | |||||||||
OB | — | — | 417.94±13.69 | 12.04±2.13 | 1.10±0.15 | 36.44±7.54 | 33.08±7.56 | 190.15±37.02 | |||||||||
成年树 Mature tree n=10 | L | 1.32±0.68 | 129.43±64.24 | 9.49±3.65 | 1.15±0.23 | 4.29±0.36 | 18.89±1.40 | 40.99±2.18 | 39.02±3.73 | 0.004±0.001 | 457.29±15.20 | 26.38±2.04 | 1.76±0.26 | 33.92±7.58 | 29.56±7.59 | 112.49±21.57 | |
NT | — | — | 493.88±14.06 | 17.43±2.55 | 1.20±0.20 | 48.20±8.91 | 43.72±8.83 | 254.45±51.42 | |||||||||
OB | — | — | 417.92±10.00 | 12.14±1.48 | 1.24±0.21 | 36.72±8.47 | 32.36±7.58 | 208.65±47.61 | |||||||||
水曲柳 F. mandshurica | 幼苗 Seedling n=10 | L | 1.13±0.63 | 107.74±45.24 | 7.68±2.37 | 1.43±0.34 | 4.51±0.60 | 7.04±0.88 | 4.83±0.66 | 54.18±27.19 | 0.011±0.003 | 411.74±20.60 | 32.43±4.51 | 2.24±0.44 | 8.79±3.76 | 7.34±3.01 | 36.42±16.86 |
NT | — | — | 468.04±18.10 | 11.53±1.44 | 0.75±0.24 | 32.44±6.39 | 21.51±4.76 | 86.41±29.79 | |||||||||
OB | — | — | 391.15±34.55 | 9.92±1.58 | 0.85±0.23 | 26.48±5.68 | 19.02±4.09 | 70.45±20.58 | |||||||||
幼树 Sapling n=10 | L | 1.07±0.37 | 99.11±47.56 | 6.73±1.55 | 1.46±0.25 | 4.42±0.37 | 16.82±2.06 | 17.83±1.12 | 46.17±20.10 | 0.012±0.002 | 415.91±40.76 | 29.17±3.48 | 2.25±0.36 | 29.17±3.48 | 8.67±4.00 | 43.62±20.41 | |
NT | — | — | 479.61±41.73 | 11.75±1.92 | 0.92±0.12 | 44.15±5.21 | 29.25±3.68 | 152.79±29.89 | |||||||||
OB | — | — | 401.62±17.26 | 9.35±1.23 | 0.70±0.15 | 33.44±5.34 | 24.06±3.98 | 87.94±18.47 | |||||||||
成年树 Mature tree n=10 | L | 1.04±0.37 | 91.12±31.88 | 7.33±1.93 | 1.39±0.30 | 4.69±0.54 | 21.72±1.24 | 42.05±1.42 | 38.84±2.45 | 0.012±0.002 | 419.17±9.54 | 29.31±3.09 | 2.34±0.23 | 14.54±8.21 | 11.17±6.05 | 58.15±36.27 | |
NT | — | — | 468.52±7.47 | 12.57±1.18 | 0.90±0.12 | 46.09±5.42 | 30.68±3.52 | 171.98±37.24 | |||||||||
OB | — | — | 401.57±11.20 | 10.68±1.31 | 0.86±0.12 | 35.20±5.99 | 24.82±4.59 | 103.38±15.06 | |||||||||
裂叶榆 U. laciniata | 幼苗 Seedling n=10 | L | 0.97±0.67 | 114.58±63.72 | 7.05±2.85 | 1.23±0.48 | 4.61±0.40 | 4.73±0.88 | 3.80±0.62 | 42.57±4.75 | 0.010±0.002 | 365.23±32.23 | 31.87±5.75 | 2.58±0.63 | 24.82±16.96 | 18.28±15.65 | 82.71±69.72 |
NT | — | — | 459.02±16.08 | 20.90±3.58 | 1.38±0.17 | 36.90±3.35 | 31.75±3.39 | 103.29±18.31 | |||||||||
OB | — | — | 389.63±19.15 | 13.91±1.20 | 1.52±0.15 | 30.02±3.18 | 23.80±2.81 | 90.00±19.61 | |||||||||
幼树 Sapling n=10 | L | 1.04±0.22 | 153.90±34.36 | 10.02±1.32 | 1.50±0.28 | 5.33±0.39 | 12.20±1.94 | 18.31±1.14 | 44.10±3.03 | 0.013±0.002 | 380.06±27.91 | 31.66±7.87 | 2.54±0.81 | 28.71±10.67 | 21.71±9.89 | 88.88±35.48 | |
NT | — | — | 448.07±21.71 | 22.94±2.89 | 1.55±0.16 | 39.42±3.74 | 33.98±2.95 | 125.44±39.78 | |||||||||
OB | — | — | 376.80±10.16 | 15.39±2.71 | 1.65±0.23 | 32.42±5.37 | 25.54±4.27 | 98.53±26.28 | |||||||||
成年树 Mature tree n=10 | L | 1.40±0.73 | 193.06±54.22 | 10..21±3.09 | 1.52±0.30 | 5.39±0.48 | 16.66±1.87 | 41.30±0.90 | 45.19±2.23 | 0.014±0.003 | 385.21±18.68 | 30.99±3.87 | 2.32±0.38 | 29.29±7.64 | 21.83±6.92 | 94.72±34.84 | |
NT | — | — | 446.03±9.05 | 21.81±1.71 | 1.52±0.07 | 33.21±8.00 | 27.67±7.87 | 121.83±26.41 | |||||||||
OB | — | — | 386.92±8.27 | 14.84±1.25 | 1.53±0.09 | 31.45±4.83 | 25.49±4.43 | 90.28±30.12 | |||||||||
紫椴 T. amurensis | 幼苗 Seedling n=10 | L | 1.10±0.56 | 92.53±43.39 | 7.12±1.96 | 1.34±0.29 | 4.49±0.49 | 4.58±0.94 | 4.37±0.61 | 32.51±2.61 | 0.008±0.002 | 465.42±21.21 | 34.03±3.13 | 2.93±0.60 | 27.26±17.39 | 23.52±16.77 | 113.79±87.03 |
NT | — | — | 460.06±16.32 | 13.72±1.61 | 0.94±0.15 | 10.93±5.15 | 7.91±4.46 | 159.47±37.81 | |||||||||
OB | — | — | 394.17±14.63 | 10.22±1.36 | 1.11±0.15 | 20.32±5.18 | 18.51±4.78 | 63.47±15.14 | |||||||||
幼树 Sapling n=10 | L | 0.83±0.17 | 87.77±26.62 | 6.88±1.43 | 1.25±0.22 | 4.34±0.51 | 12.60±2.41 | 17.70±1.48 | 40.77±3.42 | 0.011±0.003 | 460.19±30.84 | 33.83±5.95 | 2.51±0.31 | 25.93±11.59 | 23.02±10.88 | 107.63±43.09 | |
NT | — | — | 482.02±22.37 | 15.15±1.30 | 1.11±0.15 | 20.82±7.08 | 16.00±7.20 | 223.24±53.28 | |||||||||
OB | — | — | 395.44±19.37 | 11.35±1.43 | 1.22±0.13 | 21.99±6.10 | 20.21±6.01 | 74.27±22.69 | |||||||||
成年树 Mature tree n=10 | L | 1.09±0.26 | 142.34±55.45 | 9.30±2.09 | 1.24±0.29 | 5.56±0.38 | 18.92±2.60 | 43.04±2.80 | 41.70±4.71 | 0.011±0.002 | 448.10±14.76 | 33.41±3.42 | 2.62±0.23 | 29.58±8.08 | 26.11±7.11 | 102.48±35.54 | |
NT | — | — | 465.33±13.17 | 14.09±1.75 | 1.06±0.17 | 22.07±8.56 | 20.01±8.83 | 214.13±49.36 | |||||||||
OB | — | — | 397.20±7.93 | 11.07±1.44 | 1.24±0.08 | 25.00±7.94 | 23.11±7.65 | 92.00±31.89 | |||||||||
五角槭 A. pictum subsp. mono | 幼苗 Seedling n=5 | L | 0.70±0.13 | 102.59±27.80 | 6.24±1.09 | 1.13±0.17 | 5.18±0.43 | 4.62±1.15 | 4.04±0.72 | 39.75±2.50 | 0.007±0.001 | 444.38±26.59 | 36.01±3.04 | 2.22±0.52 | 39.62±12.83 | 33.41±11.96 | 108.61±46.61 |
NT | — | — | 479.64±20.50 | 12.25±3.90 | 0.81±0.26 | 49.30±7.13 | 42.30±7.41 | 168.66±30.97 | |||||||||
OB | — | — | 410.31±16.40 | 8.93±1.79 | 0.81±0.27 | 39.23±8.46 | 34.16±7.66 | 169.88±39.02 | |||||||||
幼树 Sapling n=7 | L | 1.22±0.46 | 142.65±50.19 | 8.57±1.29 | 1.49±0.25 | 4.69±0.67 | 11.26±1.09 | 17.51±1.74 | 42.11±3.94 | 0.010±0.002 | 426.09±19.81 | 39.03±6.63 | 2.49±0.74 | 65.03±21.48 | 57.17±21.05 | 217.57±69.75 | |
NT | — | — | 483.04±18.90 | 11.24±2.63 | 1.04±0.24 | 55.55±11.85 | 48.87±12.33 | 198.68±62.76 | |||||||||
OB | — | — | 411.66±15.94 | 8.92±1.65 | 0.93±0.21 | 37.76±7.19 | 32.98±7.25 | 156.23±36.49 | |||||||||
成年树 Mature tree n=10 | L | 1.13±0.21 | 113.06±28.57 | 6.36±1.40 | 1.08±0.20 | 5.74±0.34 | 14.00±3.00 | 41.32±2.20 | 42.21±2.56 | 0.010±0.002 | 430.62±20.17 | 35.32±4.78 | 2.63±0.25 | 59.71±15.70 | 52.29±14.72 | 175.79±35.81 | |
NT | — | — | 476.17±9.66 | 11.70±0.69 | 1.05±0.09 | 54.24±6.88 | 47.34±6.65 | 199.33±30.51 | |||||||||
OB | — | — | 402.10±6.90 | 9.81±0.51 | 0.96±0.05 | 41.60±5.67 | 36.61±5.43 | 177.85±39.22 |
何芸雨, 郭水良, 王 喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43 (12): 1021- 1035.
doi: 10.17521/cjpe.2019.0122 |
|
He Y Y, Guo S L, Wang Z. Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 2019, 43 (12): 1021- 1035.
doi: 10.17521/cjpe.2019.0122 |
|
刘晓娟, 马克平. 植物功能性状研究进展. 中国科学(生命科学), 2015, 45 (4): 325- 339.
doi: 10.1360/N052014-00244 |
|
Liu X J, Ma K P. Plant functional traits-concepts, applications and future directions. Scientia Sinica (Vitae), 2015, 45 (4): 325- 339.
doi: 10.1360/N052014-00244 |
|
解书文, 金光泽, 刘志理. 小兴安岭不同耐荫性树种枝叶性状变异及权衡. 生态学报, 2023, 43 (22): 9314- 9327. | |
Xie S W, Jin G Z, Liu Z L. Variation and trade-off of twig and leaf traits of different shade tolerance species in Xiaoxingan Mountains. Acta Ecologica Sinica, 2023, 43 (22): 9314- 9327. | |
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 2012, 20 (4): 470- 481. | |
Xu L N, Jin G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, northeast China. Biodiversity Science, 2012, 20 (4): 470- 481. | |
Agrawal A A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology, 2020, 101 (2): e02924.
doi: 10.1002/ecy.2924 |
|
Akram M A, Wang X T, Shrestha N, et al. Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. Science of the Total Environment, 2023, 897, 165394.
doi: 10.1016/j.scitotenv.2023.165394 |
|
Albert A, Sareedenchai V, Heller W, et al. Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia, 2009, 160 (1): 1- 8.
doi: 10.1007/s00442-009-1277-1 |
|
Anderegg L D L, Berner L T, Badgley G, et al. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 2018, 21 (5): 734- 744.
doi: 10.1111/ele.12945 |
|
Blumenthal D M, Mueller K E, Kray J A, et al. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: the central roles of phenology and leaf dry matter content. Journal of Ecology, 2020, 108 (6): 2336- 2351.
doi: 10.1111/1365-2745.13454 |
|
Carlson J E, Adams C A, Holsinger K E. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a south African shrub. Annals of Botany, 2016, 117 (1): 195- 207.
doi: 10.1093/aob/mcv146 |
|
Chauvin K M, Asner G P, Martin R E, et al. Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community. Oecologia, 2018, 186 (3): 765- 782.
doi: 10.1007/s00442-017-4043-9 |
|
Coley P D. Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytologist, 1987, 106 (s1): 251- 263.
doi: 10.1111/j.1469-8137.1987.tb04693.x |
|
Coley P D, Bryant J P, Chapin F S III. Resource availability and plant antiherbivore defense. Science, 1985, 230 (4728): 895- 899.
doi: 10.1126/science.230.4728.895 |
|
Cornwell W K, Wright I J, Turner J, et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Global Ecology and Biogeography, 2018, 27 (9): 1056- 1067.
doi: 10.1111/geb.12764 |
|
Da R H, Fan C Y, Zhang C Y, et al. Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. New Phytologist, 2023, 239 (1): 75- 86.
doi: 10.1111/nph.18915 |
|
Delagrange S, Messier C, Lechowicz M J, et al. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiology, 2004, 24 (7): 775- 784.
doi: 10.1093/treephys/24.7.775 |
|
Díaz S, Kattge J, Cornelissen J H C, et al. The global spectrum of plant form and function. Nature, 2016, 529 (7585): 167- 171.
doi: 10.1038/nature16489 |
|
Drake P L, Froend R H, Franks P J. Linking hydraulic conductivity and photosynthesis to water-source partitioning in trees versus seedlings. Tree Physiology, 2011, 31 (7): 763- 773.
doi: 10.1093/treephys/tpr068 |
|
Fajardo A, Siefert A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology, 2018, 99 (5): 1024- 1030.
doi: 10.1002/ecy.2194 |
|
Grime J P, Hunt R. Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology, 1975, 63 (2): 393- 422.
doi: 10.2307/2258728 |
|
Gross N, Bagousse-Pinguet Y, Liancourt P, et al. Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 2017, 1 (5): 132. | |
Hahn P G, Agrawal A A, Sussman K I, et al. Population variation, environmental gradients, and the evolutionary ecology of plant defense against herbivory. The American Naturalist, 2019, 193 (1): 20- 34.
doi: 10.1086/700838 |
|
Hahn P G, Keefover-Ring K, Nguyen L M N, et al. Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Functional Ecology, 2021, 35 (11): 2387- 2396.
doi: 10.1111/1365-2435.13878 |
|
Jiang F, Cadotte M W, Jin G Z. Size- and environment-driven seedling survival and growth are mediated by leaf functional traits. Proceedings of the Royal Society B: Biological Sciences, 2022, 289 (1983): 20221400.
doi: 10.1098/rspb.2022.1400 |
|
Koricheva J. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology, 2002, 83 (1): 176- 190.
doi: 10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2 |
|
Lajoie G, Vellend M. Understanding context dependence in the contribution of intraspecific variation to community trait–environment matching. Ecology, 2015, 96 (11): 2912- 2922.
doi: 10.1890/15-0156.1 |
|
Li L, Wei S G, Huang Z L, et al. Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. Journal of Integrative Plant Biology, 2008, 50 (9): 1140- 1150.
doi: 10.1111/j.1744-7909.2008.00690.x |
|
Liu X L, Zhao M M, Wang J S, et al. Antioxidant activity of methanolic extract of Emblica fruit (Phyllanthus emblica L. ) from six regions in China. Journal of Food Composition and Analysis, 2008, 21 (3): 219- 228.
doi: 10.1016/j.jfca.2007.10.001 |
|
Liu Z L, Hikosaka K, Li F R, et al. Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 2020, 34 (2): 458- 467.
doi: 10.1111/1365-2435.13498 |
|
Liu Z L, Jiang F, Li F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances. Forest Ecology and Management, 2019, 434, 63- 75.
doi: 10.1016/j.foreco.2018.12.008 |
|
Makkar H P S, Blümmel M, Borowy N K, et al. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture, 1993, 61 (2): 161- 165.
doi: 10.1002/jsfa.2740610205 |
|
Martini F, Aluthwattha S T, Mammides C, et al. Plant apparency drives leaf herbivory in seedling communities across four subtropical forests. Oecologia, 2021, 195 (3): 575- 587.
doi: 10.1007/s00442-020-04804-8 |
|
Masaki T, Kitagawa R, Nakashizuka T, et al. Interspecific variation in mortality and growth and changes in their relationship with size class in an old-growth temperate forest. Ecology and Evolution, 2021, 11 (13): 8869- 8881.
doi: 10.1002/ece3.7720 |
|
Matsuo T, Martínez-Ramos M, Bongers F, et al. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 2021, 109 (8): 2871- 2884.
doi: 10.1111/1365-2745.13680 |
|
McIntyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation–towards a global perspective on functional traits. Journal of Vegetation Science, 1999, 10 (5): 621- 630.
doi: 10.2307/3237077 |
|
Messier J, Lechowicz M J, McGill B J, et al. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology, 2017, 105 (6): 1775- 1790.
doi: 10.1111/1365-2745.12755 |
|
Mohanbabu N, Veldhuis M P, Jung D, et al. Integrating defense and leaf economic spectrum traits in a tropical savanna plant. Frontiers in Plant Science, 2023, 14, 1185616.
doi: 10.3389/fpls.2023.1185616 |
|
Morrow C J, Jaeger S J, Lindroth R L. Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia, 2022, 199 (1): 119- 128.
doi: 10.1007/s00442-022-05158-z |
|
Niinemets Ü. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 2015, 205 (1): 79- 96.
doi: 10.1111/nph.13001 |
|
Niinemets Ü, Valladares F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 2006, 76 (4): 521- 547.
doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2 |
|
Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 2002, 89 (5): 812- 819.
doi: 10.3732/ajb.89.5.812 |
|
Pang Z Q, Chen J, Wang T H, et al. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 2021, 12, 621276.
doi: 10.3389/fpls.2021.621276 |
|
Pellissier L, Descombes P, Hagen O, et al. Growth-competition-herbivore resistance trade-offs and the responses of alpine plant communities to climate change. Functional Ecology, 2018, 32 (7): 1693- 1703.
doi: 10.1111/1365-2435.13075 |
|
Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61 (3): 167.
doi: 10.1071/BT12225 |
|
Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193 (1): 30- 50.
doi: 10.1111/j.1469-8137.2011.03952.x |
|
Reich P B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Rosas T, Mencuccini M, Barba J, et al. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 2019, 223 (2): 632- 646.
doi: 10.1111/nph.15684 |
|
Rosas T, Mencuccini M, Batlles C, et al. 2021. Are leaf, stem and hydraulic traits good predictors of individual tree growth? Functional Ecology, 35(11): 2435−2447. | |
Shipley B, Lechowicz M J, Wright I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 2006, 87 (3): 535- 541.
doi: 10.1890/05-1051 |
|
Sitters J, Jasper Wubs E R, Bakker E S, et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26 (4): 2060- 2071.
doi: 10.1111/gcb.15023 |
|
Song Y H, Jin G Z. 2023. Do tree size and tree shade tolerance affect the photosynthetic capacity of broad-leaved tree species? Plants, 12(3): 523. | |
Thomas S C. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Tree Physiology, 2010, 30 (5): 555- 573.
doi: 10.1093/treephys/tpq005 |
|
Wang C N, Li X, Lu X M, et al. 2023a. Intraspecific trait variation governs grazing-induced shifts in plant community above- and below-ground functional trait composition. Agriculture, Ecosystems & Environment, 346: 108357. | |
Wang J F, Wang X X, Ji Y H, et al. Climate factors determine the utilization strategy of forest plant resources at large scales. Frontiers in Plant Science, 2022a, 13, 990441.
doi: 10.3389/fpls.2022.990441 |
|
Wang K B, Jin G Z, Liu Z L. Dynamic variation of non-structural carbohydrates in branches and leaves of temperate broad-leaved tree species over a complete life history. Frontiers in Forests and Global Change, 2023b, 6, 1130604.
doi: 10.3389/ffgc.2023.1130604 |
|
Wang X Z, Sun S W, Sedio B E, et al. Niche differentiation along multiple functional-trait dimensions contributes to high local diversity of Euphorbiaceae in a tropical tree assemblage. Journal of Ecology, 2022b, 110 (11): 2731- 2744.
doi: 10.1111/1365-2745.13984 |
|
Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33 (1): 125- 159.
doi: 10.1146/annurev.ecolsys.33.010802.150452 |
|
Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143 (1): 155- 162.
doi: 10.1046/j.1469-8137.1999.00427.x |
|
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428 (6985): 821- 827.
doi: 10.1038/nature02403 |
|
Wright S J, Kitajima K, Kraft N J B, et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology, 2010, 91 (12): 3664- 3674.
doi: 10.1890/09-2335.1 |
|
Yang D X, Song L, Jin G Z. The soil C: N: P stoichiometry is more sensitive than the leaf C: N: P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant and Soil, 2019, 442 (1): 183- 198. | |
Zhang Q Y, Jia X X, Shao M A, et al. Unfolding non-structural carbohydrates from sapling to dying black locust on China’s Loess Plateau. Journal of Plant Growth Regulation, 2018, 37 (3): 794- 802.
doi: 10.1007/s00344-017-9774-7 |
|
Zhang S, Xu G R, Zhang Y X, et al. Canopy height, rather than neighborhood effects, shapes leaf herbivory in a tropical rainforest. Ecology, 2023, 104 (5): e4028.
doi: 10.1002/ecy.4028 |
|
Zhang X S, Jin G Z, Liu Z L. Contribution of leaf anatomical traits to leaf mass per area among canopy layers for five coexisting broadleaf species across shade tolerances at a regional scale. Forest Ecology and Management, 2019, 452, 117569.
doi: 10.1016/j.foreco.2019.117569 |
|
Zheng J, Jiang Y, Qian H, et al. Size-dependent and environment-mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecology and Evolution, 2022, 12 (1): e8516.
doi: 10.1002/ece3.8516 |
[1] | 贺舒蕾,陈艳梅,刘倩愿,郭文芳. 太行山东麓酸枣果实表型性状特征及主要驱动因子[J]. 林业科学, 2025, 61(2): 101-112. |
[2] | 王巍樾,万艳芳,王冬梅,于澎涛,王彦辉,白雨诗. 六盘山华北落叶松优势木径向生长及主要环境因子的坡向差异[J]. 林业科学, 2025, 61(1): 26-36. |
[3] | 周庆,张恒,赵鹏武,周勇,章林,弥宏卓,王嘉夫,赵梦玉,杨泽华. 内蒙古大兴安岭林火发生概率及驱动因素在1987年森林大火重大历史事件前后的差异[J]. 林业科学, 2024, 60(7): 81-94. |
[4] | 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测[J]. 林业科学, 2024, 60(11): 63-74. |
[5] | 张欣, 张秋良, 孙守家, 王冰. 兴安落叶松生态系统CO2浓度及其δ13C动态对环境因子的响应[J]. 林业科学, 2023, 59(9): 55-65. |
[6] | 张淑宁,陈俊兴,敖敦,红梅,张雅茜,包福海,王淋,乌云塔娜,白玉娥,包文泉. 气候变化背景下我国长柄扁桃潜在适生区预测[J]. 林业科学, 2023, 59(12): 25-36. |
[7] | 王东升,赵伟,程蓓蓓,张吉军. 基于MaxEnt模型的中国山楂潜在适生区[J]. 林业科学, 2022, 58(7): 43-50. |
[8] | 王立轩,杨光,高佳琪,郑鑫,李兆国,瓮岳太,邸雪颖,于宏洲. 兴安落叶松林火烧迹地地表枯落物燃烧性变化[J]. 林业科学, 2022, 58(6): 110-121. |
[9] | 赵鹏宇,白雪,燕平梅,赵晓东,武晓英,柴宝峰. 华北落叶松林土壤细菌群落结构与表型的环境异质性响应[J]. 林业科学, 2021, 57(7): 101-110. |
[10] | 白蕤,李宁,刘少军,陈小敏,邹海平,吕润. 未来气候变化背景下橡胶树白根病在中国的风险分析[J]. 林业科学, 2021, 57(6): 37-45. |
[11] | 尹凤娟,王明琦,金光泽,刘志理. 红松不同生活史阶段的枝叶权衡[J]. 林业科学, 2021, 57(4): 54-62. |
[12] | 李文博,吕振刚,黄选瑞,张志东. 河北省北部华北落叶松人工林立地指数空间分布预测[J]. 林业科学, 2021, 57(3): 79-89. |
[13] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[14] | 马凡强,郭泉水,秦爱丽,简尊吉,黄吉勇,王中兵,杨泉,张世强. 濒危植物崖柏回归苗木存活和生长与环境因子的关联性[J]. 林业科学, 2021, 57(11): 1-12. |
[15] | 陈模舜,金则新,柯世省,陈子林,潘德月. 极濒危物种天台鹅耳枥群落特征及其与环境因子的关系[J]. 林业科学, 2020, 56(9): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||