林业科学 ›› 2024, Vol. 60 ›› Issue (7): 81-94.doi: 10.11707/j.1001-7488.LYKX20220892
周庆1,2(),张恒1,2,*,赵鹏武1,周勇3,章林3,弥宏卓4,王嘉夫5,赵梦玉6,杨泽华6
收稿日期:
2022-12-18
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
张恒
E-mail:wilsonzhou1224@emails.imau.edu.cn
基金资助:
Qing Zhou1,2(),Heng Zhang1,2,*,Pengwu Zhao1,Yong Zhou3,Lin Zhang3,Hongzhuo Mi4,Jiafu Wang5,Mengyu Zhao6,Zehua Yang6
Received:
2022-12-18
Online:
2024-07-25
Published:
2024-08-19
Contact:
Heng Zhang
E-mail:wilsonzhou1224@emails.imau.edu.cn
摘要:
目的: 分析内蒙古大兴安岭林火发生概率及驱动因素在1987年森林大火前后的差异,了解重大历史事件对林火防控的影响,为未来重大事件发生背景下的林火管理与防火资源合理配置优化提供理论支撑。方法: 基于1980—2018年(39年)内蒙古大兴安岭历史火灾数据,以对我国森林火灾防控有重大影响的1987年森林大火为分界线,采用逻辑斯蒂回归(LR)和增强回归树(BRT)2种林火预测模型对1987年森林大火发生前、发生后和所有年份3个时期的林火发生概率和驱动因素进行分析和比较,同时计算各旗(县)低、中、高3个火险等级的面积,判读不同时期的林火驱动因素和火险变化差异。结果: 1) 无论用所有年份还是用1987年前和1987年后的数据建模,BRT模型预测精度均高于LR模型,虽然LR模型预测精度略低,但也可以满足预测需求;2) 2种林火预测模型对3个时期的预测准确率均表现为所有年份>1987年后>1987年前,说明在样本数据量足够的情况下,以1987年森林大火为分界线并未提高预测精度,利用所有年份数据建模具有较高可信度;3) 气候因素在不同时期均为影响林火发生的主导因素,尤其要关注火灾发生前一年秋季防火期的相关气象指标(平均/最高气温、平均/最高地表温度、日照时数);4) 3个时期的火灾中高风险区发生明显变化,内蒙古大兴安岭东部(鄂伦春自治旗东南部、莫力达瓦达斡尔族自治旗大部及阿荣旗中部)3个时期均有较高火灾风险,北部原始林区(额尔古纳市北部)1987年前中高风险区很少,1987年后中高风险区显著增多。导致火灾发生的原因1987年前主要是人为因素,1987年后有关政策和法规的制定使人为因素引发的森林火灾减少,但雷击火次数有所增加。结论: 1987年森林大火重大历史事件的发生使我国森林防火政策发生巨大变化,影响内蒙古大兴安岭林火发生概率及驱动因素的主导因素由人为因素转变为自然因素(雷击火)。
中图分类号:
周庆,张恒,赵鹏武,周勇,章林,弥宏卓,王嘉夫,赵梦玉,杨泽华. 内蒙古大兴安岭林火发生概率及驱动因素在1987年森林大火重大历史事件前后的差异[J]. 林业科学, 2024, 60(7): 81-94.
Qing Zhou,Heng Zhang,Pengwu Zhao,Yong Zhou,Lin Zhang,Hongzhuo Mi,Jiafu Wang,Mengyu Zhao,Zehua Yang. Differences in the Orobability and Drivers of Forest Fires in the Daxing’an Mountains of Inner Mongolia before and after the Major Historical Event of the Forest Fire in 1987[J]. Scientia Silvae Sinicae, 2024, 60(7): 81-94.
表1
气象站概况"
省区 Provincial level | 站号 Station No. | 站名 Station name | 经度 Longitude(°E) | 纬度 Latitude(°N) |
内蒙古自治区 Inner Mongolia Autonomous Region | 小二沟 Xiao'ergou | 123.72 | 49.20 | |
牙克石 Yakeshi | 120.72 | 49.27 | ||
鄂伦春 Oroqen | 123.73 | 50.58 | ||
博克图 Boketu | 121.92 | 48.77 | ||
扎兰屯 Zhalantun | 122.73 | 48.00 | ||
索伦 Suolun | 121.23 | 46.62 | ||
莫力达瓦 Morin Dawa | 124.48 | 48.47 | ||
阿尔山 Arxan | 119.93 | 47.17 | ||
阿荣旗 Arun | 123.48 | 48.13 | ||
额尔古纳 Ergun | 120.20 | 50.22 | ||
根河 Genhe | 121.31 | 50.47 | ||
图里河 Tulihe | 121.41 | 50.29 | ||
黑龙江省 Heilongjiang Province | 加格达奇 Jiagedaqi | 124.07 | 50.24 | |
漠河 Mohe | 122.31 | 52.58 |
表2
变量的单位及其数据类型"
因素Factors | 变量Variables | 单位Units | 数据类型/分辨率Data type/resolution |
气候 Climate | 日平均气温Average daily temperature | ℃ | 日尺度/0.01 Daily/0.01 |
日最高气温Daily maximum temperature | ℃ | ||
日平均相对湿度Daily average relative humidity | % | ||
日最小相对湿度Daily minimum relative humidity | % | ||
日平均地表温度Average daily surface air temperature | ℃ | ||
日最高地表温度Daily maximum surface temperature | ℃ | ||
日平均风速Daily average wind speed | m·s?1 | ||
日降水量Daily precipitation | mm | ||
日照时数Sunshine hours | h | ||
火灾发生当月平均气温 Average temperature of the month when the fire occurred | ℃ | 月尺度/0.01 Monthly/0.01 | |
火灾发生当月平均降水量 Average precipitation for the month in which the fire occurred | mm | ||
火灾发生当月平均湿度 Average humidity of the month when the fire occurred | % | ||
火灾发生上1月平均气温 Average temperature in the month preceding the fire | ℃ | ||
火灾发生上1月平均降水量 Average precipitation in the month preceding the fire | mm | ||
火灾发生上1月平均湿度 Average humidity in the month preceding the fire | % | ||
前1年秋季防火期平均温度 Average temperature during the previous year’s fall fire season | ℃ | 防火期尺度/0.01 Fire prevention period /0.01 | |
前1年秋季防火期平均湿度 Average humidity during the previous year’s fall fire season | % | ||
前1年秋季防火期平均地表温度 Average surface air temperature during the previous year’s fall fire season | ℃ | ||
前1年秋季防火期平均降水量 Average precipitation during the previous year’s fall fire season | mm | ||
前1年秋季防火期平均日照时数 Average sunshine hours during the previous year’s fall fire season | h | ||
基础设施 Infrastructure | 与最近居民点的距离Distance to the nearest settlement | km | 矢量/1∶250 000 Vector/1∶250 000 |
与最近道路的距离Distance to the nearest road | km | ||
与最近铁路的距离Distance to the nearest railroad | km | ||
与最近瞭望塔的距离 Distance to the nearest watchtower | km | ||
植被 Vegetation | 森林类型Forest type | — | 栅格/30 m Raster/30 m |
NDVI | — | 栅格/5 km Raster/5 km | |
地形 Topographic | 海拔Altitude | m | 栅格/30 m Raster/30 m |
坡向Aspect | — | ||
坡度Slope | ° | 栅格/30 m Raster/30 m | |
社会经济 Socio-economic | 人均GDP GDP per capita | 104yuan·km-2 | 年尺度 Yearly |
人口密度Population density | person·km-2 |
表3
不同时期平均每年火灾发生次数和过火面积"
致灾因素 Disaster-causing factors | 1980—1987?6?16 | 1987?6?17—2018 | 1980—2018 | |||||
火灾平均每年发生次数 Average number of fires per year | 火灾平均每年过火面积Average annual fire area/104 hm2 | 火灾平均每年发生次数 Average number of fires per year | 火灾平均每年过火面积Average annual fire area/104 hm2 | 火灾平均每年发生次数 Average number of fires per year | 火灾平均每年过火面积Average annual fire area/104 hm2 | |||
人为因素 Human factors | 54.75 | 20.76 | 22.77 | 1.50 | 29.33 | 5.45 | ||
自然因素 Natural factors | 7.37 | 9.55 | 23.19 | 0.56 | 19.94 | 2.41 | ||
外界入侵因素 Invasive factors | 0.75 | 2.16 | 2.03 | 49.03 | 1.76 | 1.70 |
表4
1987年前LR模型在样本中对重要变量的选择"
中间模型确定的变量 Variables identified byintermediate models | 显著样本数 Significant Samples | 方差膨胀 因子 Variance inflation factor | 参数估计 Parameter estimation | |||||
变量 Variable | P (最小Min.) | P (最大Max.) | 估计 Estimate | 标准误差 Standard Error | Wald卡方 Wald chi-square | P | ||
常量 Constant | ?1.572 | 0.31 | ||||||
日最小相对湿度 Daily minimum relative humidity | <0 | <0 | 5 | 1.38 | ?0.097 | 0.011 | 79.348 | <0 |
海拔 Altitude | <0 | <0 | 5 | 1.53 | ? | 0.004 | 24.42 | <0 |
与最近道路的距离 Distance to the nearest road | < | 0.001 | 5 | 1.08 | ?24.352 | 4.706 | 26.76 | <0 |
与最近铁路的距离 Distance to the nearest railroad | 4 | 3.00 | ?0.857 | 0.387 | ||||
与最近居民点的距离 Distance to the nearest settlement | 0.02 | 5 | 2.28 | ?3.475 | 1.384 | 6.304 | 0.012 | |
与最近瞭望塔的距离 Distance to the nearest watchtower | <0 | 5 | 1.04 | 1.913 | 0.553 | 11.957 | ||
人口密度Population Density | 0.04 | 4 | 1.06 | 0.018 | ||||
日平均地表温度 Average daily surface air temperature | < | < | 5 | 1.91 | 0.089 | 0.011 | 63.82 | <0 |
前1年秋季防火期平均日照时数 Average sunshine hours during the previous year’s fall fire season | 4 | 3.14 | 0.011 | 0.003 | 13.26 | |||
前1年秋季防火期平均湿度 Average humidity during the previous year’s fall fire season | 0.003 | 0.423 | 3 | 1.69 | 0.079 | 0.029 | 0.007 | |
火灾发生当月平均湿度 Average humidity of the month when the fire occurred | 5 | 1.21 | ?0.049 | 0.011 | 17.76 | <0 | ||
归一化植被指数 Normalized difference vegetation index | 0.04 | 0.12 | 3 | 5.44 | 0.126 | 0.063 | 0.047 |
图2
3个时期2种模型对重要驱动因素的排序 a表示1987年6月16日前,b表示1987年6月16日后,c表示所有年份。 a indicates before June 16, 1987, b indicates after June 16, 1987, and c indicates all years. Max_temp:日最高气温 Daily maximum temperature;Hum:日平均相对湿度 Daily average relative humidity;Minhum:日最小相对湿度 Daily minimum relative humidity;G_temp:日平均地表温度 Average daily surface air temperature;Maxg_temp:日最高地表温度 Daily maximum surface temperature;Mmeanprec:火灾发生当月平均降水量 Average precipitation for the month in which the fire occurred; Mmeanhum:火灾发生当月平均湿度 Average humidity of the month when the fire occurred;Lmeanprec:火灾发生上一月平均降水量 Average precipitation in the month preceding the fire;TempAut:前1年秋季防火期平均温度 Average temperature during the previous year's fall fire season;HumAut:前1年秋季防火期平均湿度 Average humidity during the previous year's fall fire season;G_tempAut:前1年秋季防火期平均地表温度 Average surface air temperature during the previous year's fall fire season;PrecAut:前1年秋季防火期平均降水量 Average precipitation during the previous year's fall fire season;SunAut:前一年秋季防火期平均日照时数 Average sunshine hours during the previous year's fall fire season;Dis_res:与最近居民点的距离 Distance to the nearest settlement;Dis_road:与最近道路的距离 Distance to the nearest road;Dis_rail:与最近铁路的距离 Distance to the nearest railroad;Dis_watch:与最近瞭望塔的距离 Distance to the nearest watchtower;Forest:森林类型 Forest type;NDVI:归一化植被指数 Normalized difference vegetation index;Dem:海拔 Altitude;GDP:人均GDP GDP per capita;Pop:人口密度 Population density."
表5
1987年前2种模型的预测准确性和拟合度比较①"
样本 Sample | 模型 Model | 时期 Periods | 最佳临界值 Cut-off | AUC | 预测准确性 Prediction accuracy (%) | |
训练数据集 Training data | 测试数据集 Validation | |||||
样本1 Sample 1 | LR/BRT | Ⅰ Ⅱ Ⅲ | 0.566/0.623 0.502/0.538 0.431/0.592 | 0.946/0.970 0.931/0.988 0.929/0.979 | 87.9/89.5 85.6/91.3 85.6/88.6 | 87.3/89.0 84.3/90.0 84.2/89.7 |
样本2 Sample 2 | LR/BRT | Ⅰ Ⅱ Ⅲ | 0.570/0.652 0.491/0.476 0.394/0.556 | 0.939/0.966 0.931/0.988 0.929/0.979 | 89.4/88.5 84.6/90.3 85.4/91.1 | 87.4/89.2 83.6/89.8 85.4/92.1 |
样本3 Sample 3 | LR/BRT | Ⅰ Ⅱ Ⅲ | 0.510/0.623 0.490/0.580 0.420/0.550 | 0.945/0.970 0.926/0.982 0.928/0.970 | 90.1/90.2 84.4/90.2 86.1/90.7 | 88.2/90.1 83.2/91.8 86.3/91.1 |
样本4 Sample 4 | LR/BRT | Ⅰ Ⅱ Ⅲ | 0.503/0.620 0.460/0.501 0.417/0.580 | 0.943/0.967 0.928/0.979 0.931/0.981 | 88.7/89.5 85.9/89.0 84.3/90.2 | 88.0/89.9 84.1/90.1 85.7/90.5 |
样本5 Sample 5 | LR/BRT | Ⅰ Ⅱ Ⅲ | 0.486/0.610 0.438/0.577 0.424/0.545 | 0.943/0.975 0.933/0.982 0.927/0.980 | 87.2/88.9 85.7/89.7 83.4/90.9 | 87.4/88.7 84.5/90.1 87.2/90.0 |
全样本 Complete dataset | LR/BRT | Ⅰ Ⅱ Ⅲ | 0.570/0.610 0.502/0.543 0.430/0.587 | 0.943/0.970 0.947/0.983 0.949/0.984 | 89.1/89.8 85.2/90.3 85.6/91.6 |
表6
各旗(县)火灾风险区面积统计①"
旗(县) Banner or County | 时期 Periods | 低、中、高风险区面积 Low/medium/high risk area/104 hm2 | |
LR | BRT | ||
阿尔山市Arxan City | Ⅰ | 51.5/17.4/5.5 | 48.6/15.9/9.9 |
阿荣旗Arun Banner | 30.5/36.2/44.4 | 49.8/16.5/44.7 | |
陈巴尔虎旗Chenbarhu Banner | 23.4/–/– | 23.4/–/– | |
额尔古纳市Ergun City | 103.8/106.3/51.9 | 260.0/2.0/- | |
鄂伦春自治旗Oroqen Autonomous Banner | 195.0/94.3/76.4 | 243.8/33.7/88.2 | |
鄂温克族自治旗Ewenki Autonomous Banner | 27.6/34.6/23.0 | 84.8/0.4/0.1 | |
根河市Genhe City | 199.7/0.1/– | 185.9/13.9/– | |
科尔沁右翼前旗Horqin Right Ring Front Banner | 6.7/47.3/3.4 | 40.2/16.4/1.1 | |
莫力达瓦达斡尔族自治旗Morin Dawa Daur Autonomous Banner | 0.1/15.6/87.6 | 18.7/16.8/67.8 | |
新巴尔虎左旗 New Barag Left Banner | 28.5/–/– | 28.5/–/– | |
牙克石市 Yakeshi City | 246.4/28.6/3.3 | 252.1/16.8/9.4 | |
扎赉特旗 Jalaid Banner | 0.1/5.5/10.9 | 4.7/7.7/4.0 | |
扎兰屯市 Zhalantun City | 37.9/88.7/40.5 | 78.3/53.7/35.2 | |
阿尔山市Arxan City | Ⅱ | 64.1/9.1/1.2 | 52.5/18.1/3.8 |
阿荣旗Arun Banner | 60.0/36.5/14.6 | 70.5/20.0/20.5 | |
陈巴尔虎旗Chenbarhu Banner | 21.7/1.7/– | 22.5/0.5/– | |
额尔古纳市Ergun City | 157.7/93.1/11.2 | 176.7/69.4/15.9 | |
鄂伦春自治旗Oroqen autonomous Banner | 177.2/131/57.5 | 219.6/84.2/61.8 | |
鄂温克族自治旗Ewenki autonomous Banner | 0.1/74.2/11.0 | 81.3/3.8/0.2 | |
根河市Genhe City | 170.9/24.4/4.5 | 179.1/15.3/5.5 | |
科尔沁右翼前旗Horqin Right Wing Front Banner | 38.1/19.3/– | 44.8/11.9/1.0 | |
莫力达瓦达斡尔族自治旗Morin Dawa Daur Autonomous Banner | 26.4/53.3/23.7 | 38.8/38.6/26.0 | |
新巴尔虎左旗New Barag Left Banner | 26.9/1.7/– | 21.9/6.6/– | |
牙克石市 Yakeshi City | 256.1/21.6/0.6 | 270.2/7.6/0.4 | |
扎赉特旗 Jalaid Banner | 12.8/3.6/– | 12.6/2.7/1.1 | |
扎兰屯市 Zhalantun City | 121.8/40.6/4.7 | 134.1/28.7/4.3 | |
阿尔山市Arxan City | Ⅲ | 53.3/20.7/0.4 | 41.7/26.0/6.7 |
阿荣旗Arun Banner | 51.5/35.3/24.3 | 61.9/21.9/27.3 | |
陈巴尔虎旗 Chenbarhu Banner | 23.0/0.4/– | 23.1/0.3/– | |
额尔古纳市Ergun City | 136.7/116.9/8.4 | 181.4/70.7/9.8 | |
鄂伦春自治旗Oroqen autonomous Banner | 147.6/157.9/60.1 | 188.1/117.1/60.5 | |
鄂温克族自治旗Ewenki autonomous Banner | 78.0/7.2/– | 81.5/3.8/– | |
根河市Genhe City | 148.0/51.3/0.5 | 176.4/22.2/1.2 | |
科尔沁右翼前旗Horqin Right Wing Front Banner | 31.7/25.9/– | 37.2/19.9/0.6 | |
莫力达瓦达斡尔族自治旗Morin Dawa Daur Autonomous Banner | 19.8/47.8/35.7 | 28.9/36.8/37.7 | |
新巴尔虎左旗New Barag Left Banner | 24.5/4.1/– | 22.9/5.7/– | |
牙克石市 Yakeshi City | 236.4/41.5/0.4 | 256.3/21.4/0.6 | |
扎赉特旗 Jalaid Banner | 10.5/5.4/0.4 | 11.3/3.3/1.9 | |
扎兰屯市 Zhalantun City | 88.1/73.6/5.5 | 106.5/53.7/7.0 |
蔡奇均, 曾爱聪, 苏漳文, 等. 基于Logistic回归模型的浙江省林火发生驱动因子分析. 西北农林科技大学学报(自然科学版), 2020, 48 (2): 102- 109. | |
Cai Q J, Zeng A C, Su Z W, et al. Driving factors of forest fire in Zhejiang Province based on Logistic regression model. Journal of Northwest A & F University (Natural Science Edition), 2020, 48 (2): 102- 109. | |
高 超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展. 应用生态学报, 2020, 31 (9): 3227- 3240. | |
Gao C, Lin H L, Hu H Q, et al. A review of models of forest fire occurrence prediction in China. Chinese Journal of Applied Ecology, 2020, 31 (9): 3227- 3240. | |
顾先丽, 吴志伟, 张宇婧, 等. 气候变化背景下江西省林火空间预测. 生态学报, 2020, 40 (2): 667- 677. | |
Gu X L, Wu Z W, Zhang Y J, et al. Prediction research of the forest fire in Jiangxi Province in the background of climate change. Acta Ecologica Sinica, 2020, 40 (2): 667- 677. | |
马文苑, 冯仲科, 成竺欣, 等. 山西省林火驱动因子及分布格局研究. 中南林业科技大学学报, 2020, 40 (9): 57- 69. | |
Ma W Y, Feng Z K, Cheng Z X, et al. Study on driving factors and distribution pattern of forest fires in Shanxi Province. Journal of Central South University of Forestry & Technology, 2020, 40 (9): 57- 69. | |
内蒙古自治区统计局. 2008. 改革开放30年的内蒙古. 北京: 中国统计出版社. | |
Inner Mongolia Autonomous Region Bureau of Statistics. 2008. Inner Mongolia in the 30 years of reform and opening up. Beijing: China Statistics Press. [in Chinese] | |
舒 展. 2011. 气候变化对大兴安岭塔河林业局森林火灾的影响研究. 哈尔滨: 东北林业大学. | |
Shu Z. 2011. Impacts research of climate change on forest fires in Tahe Forestry Bureau in Great Xing’an Mountain region. Harbin: Northeast Forestry University. [in Chinese] | |
苏漳文, 曾爱聪, 蔡奇均, 等. 基于Gompit回归模型的大兴安岭林火预测模型及驱动因子研究. 林业工程学报, 2019, 4 (4): 135- 142. | |
Su Z W, Zeng A C, Cai Q J, et al. Study on prediction model and driving factors of forest fire in Daxing’an Mountains using Gompit regression method. Journal of Forestry Engineering, 2019, 4 (4): 135- 142. | |
陶 晡, 齐永志, 屈 赟, 等. 基于增强回归树的海河平原小麦赤霉病预测模型构建与验证. 中国农业科学, 2021, 54 (18): 3860- 3870.
doi: 10.3864/j.issn.0578-1752.2021.18.006 |
|
Tao B, Qi Y Z, Qu Y, et al. Construction and verification of Fusarium head blight prediction model in Haihe Plain based on boosted regression tree. Scientia Agricultura Sinica, 2021, 54 (18): 3860- 3870.
doi: 10.3864/j.issn.0578-1752.2021.18.006 |
|
赵鹏武, 葛晨赫, 王嘉夫, 等. 内蒙古大兴安岭森林火险等级评价与区划研究. 西南林业大学学报(自然科学), 2021, 41 (2): 151- 158. | |
Zhao P W, Ge C H, Wang J F, et al. Study on rating and classification of forest fire risk in Daxing’an Mountains, Inner Mongolia. Journal of Southwest Forestry University (Natural Sciences), 2021, 41 (2): 151- 158. | |
Argañaraz J P, Gavier Pizarro G, Zak M, et al. Human and biophysical drivers of fires in semiarid Chaco Mountains of central Argentina. The Science of the Total Environment, 2015, 520, 1- 12.
doi: 10.1016/j.scitotenv.2015.02.081 |
|
Bar Massada A, Syphard A D, Stewart S I, et al. Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 2013, 22 (2): 174.
doi: 10.1071/WF11178 |
|
Bond W J, Keeley J E. Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 2005, 20 (7): 387- 394. | |
Chang Y, Zhu Z L, Bu R C, et al. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 2013, 28 (10): 1989- 2004.
doi: 10.1007/s10980-013-9935-4 |
|
Chen J, Di X Y. Forest fire prevention management legal regime between China and the United States. Journal of Forestry Research, 2015, 26 (2): 447- 455. | |
Dimopoulou M, Giannikos I. Towards an integrated framework for forest fire control. European Journal of Operational Research, 2004, 152 (2): 476- 486.
doi: 10.1016/S0377-2217(03)00038-9 |
|
Eskandari S, Chuvieco E. Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 57- 64.
doi: 10.1016/j.jag.2015.05.006 |
|
Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Flannigan M D, Krawchuk M A, de Groot W J, et al. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009, 18 (5): 483.
doi: 10.1071/WF08187 |
|
Gao C, Zhao F J, Shi C M, et al. Previous atlantic multidecadal oscillation (AMO) modulates the lightning-ignited fire regime in the boreal forest of northeast China. Environmental Research Letters, 2021, 16 (2): 024054.
doi: 10.1088/1748-9326/abde09 |
|
Guo F T, Innes J L, Wang G Y, et al. Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. Journal of Plant Ecology, 2015, 8 (5): 480- 490.
doi: 10.1093/jpe/rtu041 |
|
Guo F T, Su Z W, Wang G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Science of the Total Environment, 2017, 605, 411- 425. | |
Guo F T, Wang G Y, Su Z W, et al. What drives forest fire in Fujian, China? Evidence from logistic regression and random forests. International Journal of Wildland Fire, 2016a, 25 (5): 505- 519.
doi: 10.1071/WF15121 |
|
Guo F T, Zhang L J, Jin S, et al. Modeling anthropogenic fire occurrence in the boreal forest of China using logistic regression and random forests. Forests, 2016b, 7 (12): 250. | |
Hering A S, Bell C L, Genton M G. Modeling spatio-temporal wildfire ignition point patterns. Environmental and Ecological Statistics, 2009, 16 (2): 225- 250.
doi: 10.1007/s10651-007-0080-6 |
|
Hong C S, Ryu H S. Information theoretic standardized logistic regression coefficients with various coefficients of determination. Communications for Statistical Applications and Methods, 2006, 13 (1): 49- 60.
doi: 10.5351/CKSS.2006.13.1.049 |
|
Leuenberger M, Parente J, Tonini M, et al. Wildfire susceptibility mapping: deterministic vs. stochastic approaches. Environmental Modelling & Software, 2018, 101 (C): 194- 203. | |
Li C C, Wang J, Hu L Y, et al. A circa 2010 thirty meter resolution forest map for China. Remote Sensing, 2014, 6 (6): 5325- 5343.
doi: 10.3390/rs6065325 |
|
Littell J S, McKenzie D, Peterson D L, et al. Climate and wildfire area burned in western U.S. ecoprovinces, 1916—2003. Ecological Applications: a Publication of the Ecological Society of America, 2009, 19 (4): 1003- 1021.
doi: 10.1890/07-1183.1 |
|
Liu Z H, Wimberly M C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Science of the Total Environment, 2016, 542, 65- 75.
doi: 10.1016/j.scitotenv.2015.10.093 |
|
Ma W Y, Feng Z K, Cheng Z X, et al. Identifying forest fire driving factors and related impacts in China using random forest algorithm. Forests, 2020, 11 (5): 507.
doi: 10.3390/f11050507 |
|
Menard S. Six approaches to calculating standardized logistic regression coefficients. The American Statistician, 2004, 58 (3): 218- 223.
doi: 10.1198/000313004X946 |
|
Ngoc Thach N, Bao-Toan Ngo D, Xuan-Canh P, et al. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: a comparative study. Ecological Informatics, 2018, 46, 74- 85.
doi: 10.1016/j.ecoinf.2018.05.009 |
|
Oliveira S, Oehler F, San-Miguel-Ayanz J, et al. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management, 2012, 275, 117- 129.
doi: 10.1016/j.foreco.2012.03.003 |
|
Pastro L A, Dickman C R, Letnic M. Burning for biodiversity or burning biodiversity? Prescribed burn vs. wildfire impacts on plants, lizards, and mammals. Ecological Applications, 2011, 21 (8): 3238- 3253.
doi: 10.1890/10-2351.1 |
|
Pereira M G, Trigo R M, da Camara C C, et al. Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 2005, 129 (1/2): 11- 25. | |
Phelps N, Woolford D G. Comparing calibrated statistical and machine learning methods for wildland fire occurrence prediction: a case study of human-caused fires in Lac La Biche, Alberta, Canada. International Journal of Wildland Fire, 2021, 30 (11): 850- 870.
doi: 10.1071/WF20139 |
|
Ruffault J, Mouillot F. Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. International Journal of Wildland Fire, 2017, 26 (6): 498.
doi: 10.1071/WF16181 |
|
Shu Y, Shi C M, Yi B L, et al. Influence of climatic factors on lightning fires in the primeval forest region of the northern Daxing’an Mountains, China. Sustainability, 2022, 14 (9): 5462.
doi: 10.3390/su14095462 |
|
Su Z W, Hu H Q, Tigabu M, et al. Geographically weighted negative binomial regression model predicts wildfire occurrence in the great Xing’an Mountains better than negative binomial model. Forests, 2019a, 10 (5): 377.
doi: 10.3390/f10050377 |
|
Su Z W, Tigabu M, Cao Q Q, et al. Comparative analysis of spatial variation in forest fire drivers between boreal and subtropical ecosystems in China. Forest Ecology and Management, 2019b, 454, 117669.
doi: 10.1016/j.foreco.2019.117669 |
|
Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society, 2016, 91 (3): 760- 781.
doi: 10.1111/brv.12193 |
|
Thompson D. 2009. Ranking predictorsin logistic regression. Milwaukee: Assurant Health. | |
Tian X R, Cui W B, Shu L F. Evaluating fire management effectiveness with a burn probability model in Daxing’anling, China. Canadian Journal of Forest Research, 2020, 50 (7): 670- 679.
doi: 10.1139/cjfr-2019-0413 |
|
Vilar del Hoyo L, Martín Isabel M P, Martínez Vega F J. Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research, 2011, 130 (6): 983- 996.
doi: 10.1007/s10342-011-0488-2 |
|
Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222 (1/2/3): 9- 16. | |
Wu Z W, He H S, Yang J, et al. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Science of the Total Environment, 2014, 493, 472- 480. | |
Wu Z W, He H S, Keane R E, et al. Current and future patterns of forest fire occurrence in China. International Journal of Wildland Fire, 2020, 29 (2): 104- 119.
doi: 10.1071/WF19039 |
|
Wu Z W, He H S, Yang J, et al. Defining fire environment zones in the boreal forests of northeastern China. The Science of the Total Environment, 2015, 518/519, 106- 116.
doi: 10.1016/j.scitotenv.2015.02.063 |
|
Yao Q C, Brown P M, Liu S R, et al. Pacific-Atlantic Ocean influence on wildfires in Northeast China (1774 to 2010). Geophysical Research Letters, 2017, 44 (2): 1025- 1033.
doi: 10.1002/2016GL071821 |
|
Zhang H J, Qi P C, Guo G M. Improvement of fire danger modelling with geographically weighted logistic model. International Journal of Wildland Fire, 2014, 23 (8): 1130.
doi: 10.1071/WF13195 |
|
Zong X Z, Tian X R, Yao Q C, et al. An analysis of fatalities from forest fires in China, 1951—2018. International Journal of Wildland Fire, 2022, 31 (5): 507- 517.
doi: 10.1071/WF21137 |
[1] | 李伟克,舒立福,王明玉,李威,司莉青,赵凤君,李笑笑,周暖阳. 黑龙江大兴安岭林区雷击火与人为火发生规律及变化趋势[J]. 林业科学, 2024, 60(4): 136-146. |
[2] | 李威,舒立福,王明玉,李伟克,苑尚博,司莉青,赵凤君,宋佳军,王亚惠. 大兴安岭1980—2021年雷击火时空分布特征[J]. 林业科学, 2023, 59(10): 22-31. |
[3] | 胡同欣,杨艺璇,孙龙,高传宇. 兴安落叶松林和白桦林下种植大球盖菇对枯落物层燃烧性的影响[J]. 林业科学, 2022, 58(7): 32-42. |
[4] | 李伟克,舒立福,苑尚博,宋佳军,李威,司莉青,赵凤君,王亚惠,王明玉. 基于VLF/LF三维闪电定位系统的大兴安岭闪电时空分布特征[J]. 林业科学, 2022, 58(11): 21-30. |
[5] | VuongThi Minh Dien,曾健勇,满秀玲. 樟子松天然林土壤碳氮含量与水解酶活性坡位差异及月动态[J]. 林业科学, 2020, 56(2): 40-47. |
[6] | 丁令智, 满秀玲, 肖瑞晗, 蔡体久. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 2019, 55(7): 178-186. |
[7] | 林元震. 林木基因型与环境互作的研究方法及其应用[J]. 林业科学, 2019, 55(5): 142-151. |
[8] | 张凌宇, 刘兆刚. 基于地理加权回归模型的大兴安岭中部天然次生林更新分布[J]. 林业科学, 2019, 55(11): 105-116. |
[9] | Shahzad Muhammad, 韩斐斐, 姜立春. 不同抽样方法对兴安落叶松立木材积方程预测精度的影响[J]. 林业科学, 2018, 54(8): 99-105. |
[10] | 程瑞梅, 王娜, 肖文发, 沈雅飞, 刘泽彬. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7): 130-136. |
[11] | 刘琳, 刘铁男, 刘美爽, 刘俊昌. 黑龙江省森工林区林业用地面积变化及驱动因素分析[J]. 林业科学, 2016, 52(5): 160-169. |
[12] | 赵凤君, 王秋华, 舒立福, 杨丽君, 刘柯珍. 大兴安岭针叶可燃物的热值和燃点与其超临界萃取物含量的相关性[J]. 林业科学, 2016, 52(4): 68-74. |
[13] | 朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12): 29-38. |
[14] | 宋启亮, 董希斌. 大兴安岭低质阔叶混交林不同改造模式综合评价[J]. 林业科学, 2014, 50(9): 18-25. |
[15] | 宋启亮, 董希斌. 大兴安岭不同类型低质林群落稳定性的综合评价[J]. 林业科学, 2014, 50(6): 10-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||