林业科学 ›› 2025, Vol. 61 ›› Issue (2): 40-49.doi: 10.11707/j.1001-7488.LYKX20240267
收稿日期:
2024-05-10
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
赵秀海
E-mail:1148542156@qq.com;zhaoxh@bjfu.edu.cn
基金资助:
Received:
2024-05-10
Online:
2025-02-25
Published:
2025-03-03
Contact:
Xiuhai Zhao
E-mail:1148542156@qq.com;zhaoxh@bjfu.edu.cn
摘要:
目的: 基于单物种-面积模型(ISAR)探讨长白山阔叶红松林物种多样性格局及其尺度效应,以期阐明阔叶红松林群落结构及物种多样性维持机制,并为生物多样性保护和森林管理提供参考。方法: 本研究基于40 hm2阔叶红松林固定监测样地的植被调查数据,采用ISAR模型分析目标树种在0~50 m尺度上对邻域物种丰富度的影响,并通过同质性和异质性泊松零模型检验其显著性。此外,将所有树木个体按胸径划分为小径级(5 cm≤DBH<20 cm)、中径级(20 cm≤DBH<40 cm)和大径级(DBH≥40 cm),分析不同径级个体对邻域物种丰富度的影响,并使用异质性泊松零模型检验其显著性。结果: 1) 优势树种邻域的物种多样性较低。2) 生境过滤在0~10 m的尺度上作用不显著,在11~50 m尺度对群落的物种多样性结构有显著影响。3) 在0~30 m尺度范围内,不同树种的邻域物种多样性随研究尺度变化具有不同的表现,在31~50 m的尺度上,大多数树种主要表现为多样性中性种。4) 大、中、小径级个体都在0~10 m的尺度上对邻域物种多样性有促进作用,小径级个体可达14 m。在21~50 m的尺度上,中、小径级个体以促进作用为主,大径级个体以中性作用为主。5) 不同径级中的物种的多样性结构在0~20 m尺度上有差异,受物种径级影响,在21~50 m尺度上没有差异,均以多样性中性种为主。6) 在0~10 m尺度上,径级较大的个体对邻域较小径级中的物种的不对称性竞争作用效果不显著,不对称性竞争作用主要表现在14~20 m的尺度上,径级差越大效果越显著。结论: 长白山阔叶红松林群落的物种多样性格局受生境过滤、树种特性、径级结构和种间竞争的共同影响,具有显著的尺度效应。在森林经营过程中,应考虑不同尺度上的生态学过程,合理配置树种和径级结构,促进物种生态位分化和减少不对称竞争,以提高森林的生物多样性和资源利用效率。
中图分类号:
吴晓煜,赵秀海. 长白山阔叶红松林物种多样性格局及其尺度效应[J]. 林业科学, 2025, 61(2): 40-49.
Xiaoyu Wu,Xiuhai Zhao. Patterns of Species Diversity and Itʼs Scale Effects in the Broad-Leaved Korean Pine Forests of Changbai Mountain[J]. Scientia Silvae Sinicae, 2025, 61(2): 40-49.
表1
样地树种组成基本信息①"
目标物种 Target species | 平均胸径 Mean DBH/ cm | 平均树高 Mean tree hight/m | 总株数 Total plant count | 密度 Density/ hm?2 | 地上部分生物量 Aboveground biomass/(kg?hm2) | 蓄积量 Volume/ (m3 ?hm?2) |
蒙古栎 Quercus mongolica* | 59.3 | 21.3 | 1 297 | 32.4 | 157 749.6 | 77.52 |
紫椴 Tilia amurensis* | 43.5 | 18.83 | 1 924 | 48.1 | 68 368.9 | 72.01 |
红松 Pinus koraiensis* | 39 | 19.23 | 2 799 | 70 | 64 799.9 | 91.86 |
水曲柳 Fraxinus mandshurica* | 54.3 | 21.15 | 602 | 15.1 | 62 579.3 | 36.49 |
硕桦 Betula costata* | 41.3 | 20.12 | 489 | 12.2 | 15 564.7 | 15.52 |
色木槭 Acer mono | 19.3 | 13.26 | 1 731 | 43.3 | 10 751.9 | 11.45 |
假色槭 Acer pseudosieboldianum | 11.3 | 9.29 | 7 019 | 175.5 | 10 515.4 | 10.73 |
春榆 Ulmus davidiana var. japonica | 34.7 | 16.45 | 176 | 4.4 | 6 692.1 | 5.12 |
东北槭 Acer mandshuricum | 15.4 | 11.37 | 660 | 16.5 | 2 656.1 | 2.57 |
裂叶榆 Ulmus laciniata | 17.2 | 12.02 | 343 | 8.6 | 2 109.9 | 2.22 |
青楷槭 Acer tegmentosum | 9.4 | 8.71 | 1 521 | 38 | 1 441.4 | 1.56 |
小楷槭 Acer komarovii | 7.5 | 7.58 | 2 480 | 62 | 1 231.3 | 1.31 |
水榆花楸 Sorbus alnifolia | 10.5 | 9.57 | 324 | 8.1 | 933.8 | 0.84 |
朝鲜槐 Maackia amurensis | 13.2 | 11.32 | 261 | 6.5 | 802.6 | 0.86 |
花楷槭 Acer ukurunduense | 7.9 | 7.53 | 517 | 12.9 | 602.6 | 0.49 |
山荆子 Malus baccata | 18.6 | 11.98 | 99 | 2.5 | 600.4 | 0.58 |
髭脉槭 Acer barbinerve | 6.6 | 6.85 | 849 | 21.2 | 542.2 | 0.52 |
黑樱桃 Cerasus maximowiczii | 8.5 | 8.24 | 724 | 18.1 | 458.4 | 0.51 |
暴马丁香 Syringa reticulata subsp. amurensis | 8.4 | 7.61 | 534 | 13.4 | 330.0 | 0.37 |
毛榛 Corylus mandshurica | 11 | 8.17 | 91 | 2.3 | 269.0 | 0.25 |
稠李 Prunus padus | 7.5 | 7.84 | 185 | 4.6 | 82.6 | 0.10 |
其他26个树种Other 26 tree species (n<30) | 34.5 | 12.91 | 156 | 3.9 | 9 856.5 | 6.49 |
全部树种合计Total of all tree species | 21.2 | 12.35 | 24 780 | 619.5 | 418 938.4 | 339.35 |
表2
同质性泊松零模型与异质性泊松零模型下群落物种多样性结构差异的配对样本t检验P值①"
尺度区间 Scale interval | 多样性抑制种数量比例Quantity ratio of diversity inhibited species | 多样性中性种数量比例Quantity ratio of diversity neutral species | 多样性促进种数量比例Quantity ratio of diversity promoted species |
0~10 m | 1.11E?01 | 8.11E?02 | 1.93E?01 |
11~20 m | 8.11E?02 | 1.00E?06*** | 6.02E?06*** |
21~30 m | 1.01E?06*** | 5.20E?08*** | 2.66E?08*** |
31~40 m | 7.30E?07*** | 8.99E?09*** | 1.12E?09*** |
41~50 m | 6.99E?06*** | 6.37E?09*** | 4.37E?09*** |
0~50 m | 1.70E?11*** | 4.36E?16*** | 2.22E?16*** |
表3
异质性泊松零模型检验下不同树种的ISAR分析结果①"
物种Species | 尺度 Scale / m | |||||||||
0~5 | 6~10 | 11~15 | 16~20 | 21~25 | 26~30 | 31~35 | 36~40 | 41~45 | 46~50 | |
蒙古栎 Quercus mongolica* | a | r | r | r | n | n | n | n | n | n |
紫椴 Tilia amurensis* | a | n | r | r | n | n | n | a | a | n |
红松 Pinus koraiensis* | a | r | r | r | r | r | n | n | n | n |
水曲柳 Fraxinus mandshurica* | r | r | n | a | a | a | a | n | n | n |
硕桦 Betula costata* | a | n | n | n | n | n | n | n | n | n |
色木槭 Acer mono | a | a | a | a | a | a | n | n | n | n |
假色槭 Acer pseudosieboldianum | r | r | r | r | r | n | a | a | a | a |
春榆 Ulmus davidiana var. japonica | r | n | n | a | a | n | n | n | n | n |
东北槭 Acer mandshuricum | r | r | n | n | n | n | n | n | n | n |
裂叶榆 Ulmus laciniata | r | r | n | n | n | n | n | n | n | n |
青楷槭 Acer tegmentosum | r | a | a | a | a | n | n | n | n | n |
小楷槭 Acer komarovii | n | n | r | r | r | r | r | n | n | n |
水榆花楸 Sorbus alnifolia | a | r | r | r | r | n | n | n | n | n |
朝鲜槐 Maackia amurensis | n | n | n | a | a | n | n | n | n | n |
花楷槭 Acer ukurunduense | r | r | n | n | n | n | n | n | n | n |
山荆子 Malus baccata | n | a | a | a | a | a | a | n | n | n |
髭脉槭 Acer barbinerve | r | r | n | n | r | r | r | n | n | n |
黑樱桃 Cerasus maximowiczii | a | a | n | n | n | n | n | n | n | n |
暴马丁香 Syringa reticulata subsp. amurensis | r | r | n | a | a | a | a | n | n | n |
毛榛 Corylus mandshurica | r | n | n | n | n | n | n | n | n | n |
稠李 Prunus padus | r | r | n | n | n | n | n | n | n | n |
其他26个树种Other 26 tree species (n<30) | a | a | a | a | a | a | a | n | n | n |
全部树种合计Total of all tree species | a | a | a | n | n | a | a | a | a | a |
陈贝贝, 匡文浓, 姜 俊, 等. 长白山次生杨桦林优势更新幼苗空间分布及环境解释. 生态学报, 2021, 41 (11): 1- 7. | |
Chen B B, Kuang W N, Jiang J, et al. Spatial distribution of dominant regeneration seedlings and environmental interpretations of secondary poplar-birch forest in Changbai Mountains, China. Acta Ecologica Sinica, 2021, 41 (11): 1- 7. | |
陈 磊, 米湘成, 马克平. 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 2014, 26 (2): 112- 117. | |
Chen L, Mi X C, Ma K P. Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 2014, 26 (2): 112- 117. | |
陈仁飞, 姬明飞, 关佳威, 等. 植物对称性竞争与非对称性竞争研究进展及展望. 植物生态学报, 2015, 39 (5): 530- 540.
doi: 10.17521/cjpe.2015.0051 |
|
Chen R F, Ji M F, Guan J W, et al. Advances and prospects in plant symmetric and asymmetric competition. Chinese Journal of Plant Ecology, 2015, 39 (5): 530- 540.
doi: 10.17521/cjpe.2015.0051 |
|
范春楠, 张永鑫, 丁 易, 等. 吉林露水河阔叶红松林乔木植物群落结构与多样性. 北华大学学报(自然科学版), 2021, 22 (4): 443- 448. | |
Fan C N, Zhang Y X, Ding Y, et al. Structure and diversity of Arbor plant community in broad-leaved Korean pine forest in Lushuihe town, Jilin Province. Journal of Beihua University (Natural Science), 2021, 22 (4): 443- 448. | |
范春雨, 元正龙, 赵秀海. 吉林蛟河近熟林树种多样性格局尺度依赖性分析. 北京林业大学学报, 2014, 36 (6): 73- 79. | |
Fan C Y, Yuan Z L, Zhao X H. Scale dependence of species diversity pattern in a near-mature forest in Jiaohe of Jilin Province. Journal of Beijing Forestry University, 2014, 36 (6): 73- 79. | |
宫贵权, 黄忠良, 黄建雄, 等. 鼎湖山20公顷森林样地单个物种对群落的构建. 生态环境学报, 2011, 20 (6/7): 991- 995. | |
Gong Q G, Huang Z L, Huang J X, et al. How individual species structure the community in Dinghushan 20 ha forest plot. Ecology and Environmental Sciences, 2011, 20 (6/7): 991- 995. | |
郭屹立, 王 斌, 向悟生, 等. 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析. 生物多样性, 2015, 23 (2): 183- 191. | |
Guo Y L, Wang B, Xiang W S, et al. Spatial distribution of tree species in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 2015, 23 (2): 183- 191. | |
韩 大, 金光泽. 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响. 北京林业大学学报, 2017, 39 (1): 9- 19. | |
Han D, Jin G Z. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China. Journal of Beijing Forestry University, 2017, 39 (1): 9- 19. | |
强亚琪, 范春雨, 张春雨. 长白山暗针叶林群落物种多样性维持机制. 生态学报, 2023, 43 (5): 1884- 1891. | |
Qiang Y Q, Fan C Y, Zhang C Y. Species diversity maintenance mechanism of dark coniferous forests community in Changbai Mountain. Acta Ecologica Sinica, 2023, 43 (5): 1884- 1891. | |
田 锴, 陈 磊, 米湘成, 等. 亚热带常绿阔叶林木本植物幼苗分布格局及其对生境过滤的响应. 科学通报, 2013, 58 (34): 3561- 3569. | |
Tian K, Chen L, Mi X C, et al. The effect of habitat filtering on tree seedling distribution in a subtropical evergreen broadleaf forest in China. Chinese Science Bulletin (Chinese Version), 2013, 58 (34): 3561- 3569. | |
魏彦波, 程艳霞, 李金功, 等. 植物多样性促进种支配局域空间多样性结构. 北京林业大学学报, 2014, 36 (6): 66- 72. | |
Wei Y B, Cheng Y X, Li J G, et al. Plant diversity accumulators govern local spatial diversity. Journal of Beijing Forestry University, 2014, 36 (6): 66- 72. | |
闫满玉, 杜晓军, 赵爱花, 等. 河南宝天曼落叶阔叶林木本植物单物种-面积关系. 生物多样性, 2015, 23 (5): 630- 640.
doi: 10.17520/biods.2015031 |
|
Yan M Y, Du X J, Zhao A H, et al. Individual woody species-area relationship in a deciduous broad-leaved forest in Baotianman, Henan Province. Biodiversity Science, 2015, 23 (5): 630- 640.
doi: 10.17520/biods.2015031 |
|
张春雨. 通过种群互作阐释森林群落多样性格局. 北京林业大学学报, 2015, 36 (6): 60- 65. | |
Zhang C Y. Explaining diversity patterns of forest community through species interactions. Journal of Beijing Forestry University, 2015, 36 (6): 60- 65. | |
Bhandari S K, Veneklaas E J, McCaw L, et al. Individual tree growth in jarrah (Eucalyptus marginata) forest is explained by size and distance of neighbouring trees in thinned and non-thinned plots. Forest Ecology and Management, 2021, 494, 119364.
doi: 10.1016/j.foreco.2021.119364 |
|
Brown C, Burslem D F, Illian J B, et al. Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proceedings Biological Sciences, 2013, 280 (1764): 20130502. | |
Chesson P. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 2000, 31, 343- 366.
doi: 10.1146/annurev.ecolsys.31.1.343 |
|
Das A J, Larson A J, Lutz J A. Individual species-area relationships in temperate coniferous forests. Journal of Vegetation Science, 2018, 29 (2): 317- 324.
doi: 10.1111/jvs.12611 |
|
Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 2001, 89 (6): 947- 959.
doi: 10.1111/j.1365-2745.2001.00615.x |
|
Illian J B, Møller J, Waagepetersen R P. Hierarchical spatial point process analysis for a plant community with high biodiversity. Environmental and Ecological Statistics, 2009, 16 (3): 389- 405.
doi: 10.1007/s10651-007-0070-8 |
|
Ishii H, Azuma W, Nabeshima E. 2013. The need for a canopy perspective to understand the importance of phenotypic plasticity for promoting species coexistence and light-use complementarity in forest ecosystems. Ecological Research, 28(2): 191-198. | |
Landsberg J, Sands P. Physiological ecology of forest production: principles, processes and models. Tree Physiology, 2011, 31 (6): 680- 681.
doi: 10.1093/treephys/tpr062 |
|
Li Y F, He J A, Yu S F, et al. Spatial structures of different-sized tree species in a secondary forest in the early succession stage. European Journal of Forest Research, 2020, 139 (5): 709- 719.
doi: 10.1007/s10342-020-01280-w |
|
Li Y F, Ye S M, Luo Y H, et al. Relationship between species diversity and tree size in natural forests around the Tropic of Cancer. Journal of Forestry Research, 2023, 34 (6): 1735- 1745.
doi: 10.1007/s11676-023-01616-3 |
|
Luu T C, Binkley D, Stape J L. Neighborhood uniformity increases growth of individual Eucalyptus trees. Forest Ecology and Management, 2013, 289, 90- 97.
doi: 10.1016/j.foreco.2012.09.033 |
|
Myers J A, Chase J M, Jiménez I, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 2013, 16 (2): 151- 157.
doi: 10.1111/ele.12021 |
|
Murphy H T, Bradford M G. 2022. The role of big trees and abundant species in driving spatial patterns of species richness in an Australian tropical rainforest. Ecology and Evolution. 12(9): e9324. | |
Nakashizuka T. Species coexistence in temperate, mixed deciduous forests. Trends in Ecology & Evolution, 2001, 16 (4): 205- 210. | |
Pretzsch H. 2009. Forest dynamics, growth, and yield. Berlin: Springer Berlin Heidelberg, 1-39. | |
Rayburn A P, Wiegand T. Individual species-area relationships and spatial patterns of species diversity in a Great Basin, semi-arid shrubland. Ecography, 2012, 35 (4): 341- 347.
doi: 10.1111/j.1600-0587.2011.07058.x |
|
Sercu B K, Baeten L, van Coillie F, et al. 2017. How tree species identity and diversity affect light transmittance to the understory in mature temperate forests. Ecology and Evolution. 7(24): 10861-10870. | |
Shimatani K, Kubota Y. Quantitative assessment of multispecies spatial pattern with high species diversity. Ecological Research, 2004, 19 (2): 149- 163.
doi: 10.1111/j.1440-1703.2003.00619.x |
|
Shi W, Zhang Q D, Sui X H, et al. The effects of habitat filtering and non-habitat processes on species spatial distribution vary across life stages. American Journal of Botany, 2018, 105 (9): 1469- 1476.
doi: 10.1002/ajb2.1140 |
|
Thorpe H C, Astrup R, Trowbridge A, et al. Competition and tree crowns: a neighborhood analysis of three boreal tree species. Forest Ecology and Management, 2010, 259 (8): 1586- 1596.
doi: 10.1016/j.foreco.2010.01.035 |
|
Vleminckx J, Salazar D, Fortunel C, et al. Divergent secondary metabolites and habitat filtering both contribute to tree species coexistence in the Peruvian Amazon. Frontiers in Plant Science, 2018, 9, 836.
doi: 10.3389/fpls.2018.00836 |
|
Wang X G, Wiegand T, Swenson N G, et al. Mechanisms underlying local functional and phylogenetic beta diversity in two temperate forests. Ecology, 2015, 96 (4): 1062- 1073.
doi: 10.1890/14-0392.1 |
|
Weiner J. Asymmetric competition in plant populations. Trends in Ecology & Evolution, 1990, 5 (11): 360- 364. | |
Wiegand T, Savitri Gunatilleke C V, Gunatilleke I A, et al. How individual species structure diversity in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (48): 19029- 19033. | |
Zhang C, Gao L, Zhao X. Spatial structures in a secondary forest in Changbai Mountains, Northeast China. Allgemeine Forst Und Jagdzeitung, 2009, 180 (3): 45- 55. | |
Zhang C Y, Jin W B, Gao L S, et al. Scale dependent structuring of spatial diversity in two temperate forest communities. Forest Ecology and Management, 2014, 316, 110- 116.
doi: 10.1016/j.foreco.2013.07.025 |
|
Zhang C Y, Zhao X H, von Gadow K. Partitioning temperate plant community structure at different scales. Acta Oecologica, 2010, 36 (3): 306- 313.
doi: 10.1016/j.actao.2010.02.003 |
|
Zhang C Y, Zhao Y Z, Zhao X H, et al. Species-habitat associations in a northern temperate forest in China. Silva Fennica, 2012, 46 (4): 501- 519. | |
Zhang H, Gao Y, Zheng X, et al. Neighborhood diversity promotes tree growth in a secondary forest: the interplay of intraspecific competition, interspecific competition, and spatial scale. Plants, 2024, 13 (14): 1994.
doi: 10.3390/plants13141994 |
[1] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[2] | 杨润露,王娟,张春雨. 东北天然次生针阔混交林乔木层碳储量变化的采伐干扰响应[J]. 林业科学, 2024, 60(7): 17-27. |
[3] | 薛亚东,孙戈,李佳,德力格尔其木格·达瓦苏仁,阿木古郎·洛布桑金巴,李广良,秦爱丽,金崑,肖文发. 蒙古国大戈壁保护区A区戈壁棕熊及同域分布动物多样性和分布格局[J]. 林业科学, 2024, 60(7): 95-104. |
[4] | 肖欢,叶尔江·拜克吐尔汗,张春雨,赵秀海. 长白山阔叶红松林林层群落结构与生产力的关系[J]. 林业科学, 2024, 60(3): 57-64. |
[5] | 柳帅,张德旭,张安安,李哲,龙文兴,臧润国,张志东,陈远,冯广,陈玉凯. 海南长臂猿现有天然林栖息地与松树林潜在栖息地的植物物种多样性比较[J]. 林业科学, 2023, 59(7): 115-127. |
[6] | 杨林,熊忠平,刘霞,钱怡顺,杨蕊,韩秀,房华,徐正会. 新疆天山中部蚂蚁物种多样性[J]. 林业科学, 2023, 59(6): 102-111. |
[7] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
[8] | 黄绍娴,王宏翔,彭辉,王耀仪,李远发,叶绍明. 雅长保护区老龄林树种空间优势度二阶特征分析[J]. 林业科学, 2022, 58(4): 128-140. |
[9] | 刘晨,张春雨,赵秀海. 采伐干扰对吉林蛟河针阔混交林生产力稳定性的影响[J]. 林业科学, 2022, 58(3): 1-9. |
[10] | 张玮,何玉友,郭子武,汪舍平,陈双林. 失管毛竹林演替过程中乔木树种群落结构和多样性特征[J]. 林业科学, 2022, 58(12): 12-20. |
[11] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[12] | 庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学, 2021, 57(10): 157-165. |
[13] | 胡宗达,刘世荣,刘兴良,罗明霞,胡璟,李亚非,余昊,欧定华,吴德勇. 川西亚高山3种天然次生林土壤有机碳氮组分特征[J]. 林业科学, 2020, 56(11): 1-11. |
[14] | 李林,魏识广,马姜明,叶万辉,练琚愉. 生境异质性和扩散限制对南亚热带常绿阔叶林群落物种多样性的相对作用[J]. 林业科学, 2020, 56(10): 1-10. |
[15] | 何怀江, 张忠辉, 张春雨, 郝珉辉, 姚杰, 解蛰, 高海涛, 赵秀海. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响[J]. 林业科学, 2019, 55(2): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||