|
刘 骥, 曹凤莲, 甘林昊. 基于叶片形状特征的植物识别方法. 计算机应用, 2016, 36 (S2): 200- 202,226.
|
|
Liu J, Cao F L, Gan L H. Plant identification method based on leaf shape features. Journal of Computer Applications, 2016, 36 (S2): 200- 202,226.
|
|
苏 彤, 许 杰. 基于生成对抗网络的树种识别方法. 林业科学, 2024, 60 (2): 97- 105.
|
|
Su T, Xu J. Tree species identification method based on generative adversarial network. Scientia Silvae Sinicae, 2024, 60 (2): 97- 105.
|
|
王丽君, 淮永建, 彭月橙. 基于叶片图像多特征融合的观叶植物种类识别. 北京林业大学学报, 2015, 37 (1): 55- 61.
|
|
Wang L J, Huai Y J, Peng Y C. Method of identification of foliage from plants based on extraction of multiple features of leaf images. Journal of Beijing Forestry University, 2015, 37 (1): 55- 61.
|
|
张善文, 张晴晴, 齐国红. 基于Fourier描述子和LBP相结合的植物叶片识别方法. 江苏农业科学, 2019, 47 (14): 273- 276.
|
|
Zhang S W, Zhang Q Q, Qi G H. A plant leaf recognition method based on Fourier descriptor and local binary pattern. Jiangsu Agricultural Sciences, 2019, 47 (14): 273- 276.
|
|
赵 霖, 张晓丽, 吴艳双, 等. 面向机载高光谱数据的3D-CNN亚热带森林树种分类. 林业科学, 2020, 56 (11): 97- 107.
|
|
Zhao L, Zhang X L, Wu Y S, et al. Subtropical forest tree species classification based on 3D-CNN for airborne hyperspectral data. Scientia Silvae Sinicae, 2020, 56 (11): 97- 107.
|
|
朱 莉, 宋绪秋, 邢 鑫, 等. 基于改进ResNet34网络的树种识别研究. 国外电子测量技术, 2022, 41 (7): 119- 125.
|
|
Zhu L, Song X Q, Xing X, et al. Research on tree species identification based on improved ResNet34 network. Foreign Electronic Measurement Technology, 2022, 41 (7): 119- 125.
|
|
Faizal S. Automated identification of tree species by bark texture classification using convolutional neural networks. International Journal for Research in Applied Science and Engineering Technology, 2022, 10 (9): 1384- 1392.
doi: 10.22214/ijraset.2022.46846
|
|
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770–778.
|
|
Huang G, Liu Z, van Der Maaten L, et al. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, Honolulu, HI,4700- 4708.
|
|
Liu Z, Lin Y T, Cao Y, et al. 2021. Swin transformer: hierarchical vision transformer using shifted windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10012–10022.
|
|
Liu Z, Mao H Z, Wu C Y, et al. 2022. A ConvNet for the 2020s. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 11976–11786.
|
|
Lü Z M, Zhang Z B. Research on plant leaf recognition method based on multi-feature fusion in different partition blocks. Digital Signal Processing, 2023, 134, 103907.
doi: 10.1016/j.dsp.2023.103907
|
|
Miyoshi G T, dos Santos Arruda M, Osco L P, et al. A novel deep learning method to identify single tree species in UAV-based hyperspectral images. Remote Sensing, 2020, 12 (8): 1294.
doi: 10.3390/rs12081294
|
|
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128 (2): 336- 359.
doi: 10.1007/s11263-019-01228-7
|
|
Sun Y, Liu Y, Wang G, et al. 2017. Deep learning for plant identification in natural environment. Computational Intelligence and Neuroscience, 7361042.
|
|
Szegedy C, Liu W, Jia Y Q, et al. 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston: MA,USA,1−9.
|
|
Wang Q L, Wu B G, Zhu P F, et al. 2020. ECA-Net: efficient channel attention for deep convolutional neural networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: WA,USA,11534−11542.
|
|
Wu F Y, Gazo R, Benes B, et al. Deep BarkID: a portable tree bark identification system by knowledge distillation. European Journal of Forest Research, 2021, 140 (6): 1391- 1399.
doi: 10.1007/s10342-021-01407-7
|
|
Yang L, Zhang R Y, Li L, et al. 2021. Simam: a simple, parameter-free attention module for convolutional neural networks. Proceedings of the International Conference on Machine Learning, 11863–11874.
|
|
Zamir A R, Sax A, Shen W, et al. 2018. Taskonomy: disentangling task transfer learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 3712–3722.
|
|
Zhong H, Lin W S, Liu H R, et al. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in northeast China. Frontiers in Plant Science, 2022, 13, 964769.
doi: 10.3389/fpls.2022.964769
|