 
		林业科学 ›› 2021, Vol. 57 ›› Issue (10): 157-165.doi: 10.11707/j.1001-7488.20211015
庞荣荣1,彭潔莹1,闫琰1,2,*
收稿日期:2020-05-20
									
				
									
				
									
				
											出版日期:2021-10-25
									
				
											发布日期:2021-12-11
									
			通讯作者:
					闫琰
												基金资助:Rongrong Pang1,Jieying Peng1,Yan Yan1,2,*
Received:2020-05-20
									
				
									
				
									
				
											Online:2021-10-25
									
				
											Published:2021-12-11
									
			Contact:
					Yan Yan   
												摘要:
目的: 分析和比较物种多样性(物种丰富度、物种Shannon-Wiener指数和物种均匀度)、结构多样性(胸径Shannon-Wiener指数、胸径均匀度、胸径变异系数和胸径基尼系数)以及环境因素对秦岭太白山北坡锐齿栎林地上生物量的影响,为促进秦岭生物多样性保护和森林生态系统功能协调发展提供理论依据。方法: 以秦岭太白山北坡锐齿栎林为对象,基于1.5 hm2固定监测样地中所有胸径≥1 cm木本植物调查数据,利用多元线性回归分析物种多样性和结构多样性与地上生物量的相关性。通过构建结构方程模型并结合环境因素,比较物种多样性和结构多样性对地上生物量的作用效应。结果: 线性回归模型和结构方程模型的分析结果均显示:表示物种多样性的3个指标与地上生物量均无显著相关性,表示结构多样性的指标中,只有胸径均匀度与地上生物量呈显著负相关性,但胸径均匀度对地上生物量变异的解释能力却很低。环境因子对地上生物量的影响同时存在直接和间接效应,但直接效应起到主要作用。结论: 群落结构是影响太白山锐齿栎林地上生物量的重要因素;但结构多样性对地上生物量的作用效应是抑制而非促进,说明增加群落结构的复杂性反而不利于地上生物量的累积。环境因素直接影响地上生物量,但对物种多样性和结构多样性与地上生物量的关系无显著影响。本研究证实了群落结构对森林地上生物量的重要性,但这并不能说明群落结构是影响太白山次生锐齿栎林地上生物量的主导因素。
中图分类号:
庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学, 2021, 57(10): 157-165.
Rongrong Pang,Jieying Peng,Yan Yan. Factors Influencing Aboveground Biomass in the Secondary Forest of Quercus aliena var. acutiserrata in Taibai Mountain[J]. Scientia Silvae Sinicae, 2021, 57(10): 157-165.
 
												
												表1
样方环境因子数据"
| 环境因子 Environmental factors | 均值 Mean | 范围 Range | 标准差 Standard deviation | 
| 土壤pH Soil pH | 5.874 | 4.530~7.035 | 0.599 | 
| 土壤全磷含量Soil total phosphorus content/(g·kg-1) | 0.427 | 0.235~0.761 | 0.110 | 
| 土壤全钾含量Soil total potassium content/(g·kg-1) | 18.948 | 15.612~26.823 | 2.945 | 
| 土壤全氮含量Soil total nitrogen content/(g·kg-1) | 4.246 | 2.133~6.231 | 0.994 | 
| 土壤速效钾含量Soil available potassium content/(mg·kg-1) | 233.138 | 144.600~327.200 | 60.029 | 
| 土壤速效磷含量Soil available phosphorus content/(mg·kg-1) | 16.651 | 10.650~20.925 | 2.707 | 
| 土壤碱解氮含量Soil alkali hydrolyzes nitrogen content/(mg·kg-1) | 238.460 | 143.010~314.510 | 41.163 | 
| 土壤有机质含量Soil organic carbon content/(g·kg-1) | 80.706 | 47.184~111.248 | 16.229 | 
| 样方海拔Quadrat elevation /m | 1 404.749 | 1 369.242~1 439.481 | 20.038 | 
| 地表凹凸度Intensive degree | 1.271 | -3.488~8.122 | 2.893 | 
| 坡度Slope/(°) | 36.459 | 12.838~57.322 | 10.321 | 
 
												
												表2
物种多样性和结构多样性指数计算公式及结果①"
| 指数Index | 计算公式Formula | 均值Mean | 范围Rang | 
| 物种丰富度 Species richness(S) | S=NS | 13.310 | 5.000~17.000 | 
| 物种香农威纳指数 Species Shannon-Wiener index(HS) | 2.151 | 1.112~2.551 | |
| 物种均匀度 Species Pielou(ES) | ES=HS/ln(NS) | 0.836 | 0.691~0.931 | 
| 胸径香农威纳指数 DBH Shannon-Wiener index(Hd) | 2.479 | 1.802~2.875 | |
| 胸径均匀度 DBH Pielou(Ed) | Ed=Hd /ln(Hd) | 0.801 | 0.585~0.940 | 
| 胸径变异系数 Coefficient of DBH variation(Vd) | 116.131 | 87.426~171.505 | |
| 胸径基尼系数 DBH Gini index(Gd) | 0.820 | 0.697~0.916 | 
 
												
												表3
不同树种生物量模型①"
| 树种(组) Tree species (group) | 生物量模型 Biomass models | 
| 锐齿栎Quercus aliena var. acutiserrata | WT=0.094DBH 2.546 (DBH≥5 cm); WT =0.205DBH 2.062 (DBH < 5 cm) | 
| 油松Pinus tabuliformis | WS =0.145DBH 2.158; WB =0.067DBH 1.978; WL =0.060DBH1.933 | 
| 华山松Pinus armandii | WS=0.079DBH 2.282; WB =0.027DBH 2.366; WL =0.005DBH2.554 | 
| 其他树种Other species | WS =0.114DBH 2.154; WB =0.014DBH 2.538; WL =0.016DBH 2.065 (DBH < 10 cm) | 
| WS =0.103DBH 2.199; WB =0.013DBH 2.557; WL =0.016DBH2.070 (10 cm≤DBH≤20 cm) | |
| WS=0.095DBH 2.225; WB =0.013DBH 2.570; WL =0.015DBH 2.076 (DBH > 20 cm) | 
 
												
												表4
物种多样性和结构多样性指数与地上生物量构成的线性回归模型评价①"
| 解释变量Explanatory variables | a1 | a2 | R2 | AIC | 
| S+Hd | 0.141 | 0.171 | 0.043 | 104.833 | 
| HS+ Hd | -0.008 | 0.155 | 0.024 | 105.539 | 
| ES+ Hd | -0.254 | 0.191 | 0.087 | 103.199 | 
| S+ Ed | 0.023 | -0.364* | 0.137 | 101.291 | 
| HS+ Ed | -0.034 | -0.373* | 0.138 | 101.129 | 
| ES+ Ed | -0.158 | -0.338* | 0.161 | 100.252 | 
| S+ Vd | 0.074 | 0.195 | 0.050 | 104.577 | 
| HS+ Vd | -0.028 | 0.216 | 0.046 | 104.738 | 
| ES+ Vd | -0.209 | 0.193 | 0.088 | 103.153 | 
| S+Gd | 0.155 | -0.220 | 0.062 | 104.160 | 
| HS+ Gd | 0.016 | -0.198 | 0.039 | 105.013 | 
| ES+ Gd | -0.214 | -0.180 | 0.084 | 103.324 | 
 
												
												表5
环境变量相关性检验①"
| 环境变量 Environment variables | 物种均匀度 Species Pielou | 胸径均匀度 DBH Pielou | 地上生物量 Aboveground biomass | 
| 土壤pH Soil pH | 0.208 | 0.098 | -0.616** | 
| 土壤全磷含量Soil total pHosphorus content | 0.219 | 0.184 | -0.501** | 
| 土壤全钾含量Soil total potassium content | 0.288 | -0.383* | -0.657** | 
| 土壤全氮含量Soil total nitrogen content | 0.057 | -0.125 | -0.434** | 
| 土壤速效钾含量Available potassium content | 0.263 | -0.396* | -0.493** | 
| 土壤速效磷含量Available phosphorus content | 0.215 | 0.004 | -0.502** | 
| 土壤碱解氮含量Alkali hydrolyzes nitrogen content | -0.093 | -0.271 | -0.186 | 
| 土壤有机质含量Organic carbon content | -0.077 | -0.268 | -0.321 | 
| 样方海拔Quadrat elevation content | -0.126 | -0.175 | -0.433** | 
| 地表凹凸度Intensive degree | 0.159 | 0.220 | -0.081 | 
| 坡度Slope | 0.307 | 0.294 | -0.290 | 
| 车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响. 应用生态学报, 2019, 30 (7): 2241- 2248. | |
| Che Y , Jin G Z . Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korea pine forest. Chinese Journal of Applied Ecology, 2019, 30 (7): 2241- 2248. | |
| 国家林业局. 立木生物量模型及碳计量参数——栎树. 北京: 中国标准出版社, 2017. | |
| State Forestry Administration . Tree biomass models and related parameters to carbon accounting for Quercus. Beijing: Standards Press of China, 2017. | |
| 韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测. 林业科学, 2018, 54 (9): 70- 79. | |
| Han Z T , Hong J , Wang W , et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data. Scientia Silvae Sinicae, 2018, 54 (9): 70- 79. | |
| 贺鹏, 张会儒, 雷相东, 等.  基于地统计学的森林地上生物量估计. 林业科学, 2013, 49 (5): 101- 109. doi: 10.3969/j.issn.1672-8246.2013.05.018 | |
| He P ,  Zhang H R ,  Lei X D , et al.  Estimation of forest above-ground biomass based on geostatistics. Scientia Silvae Sinicae, 2013, 49 (5): 101- 109. doi: 10.3969/j.issn.1672-8246.2013.05.018 | |
| 康昕, 王笑梅, 侯嫦英, 等. 林木个体大小差异对群落地上生物量及物种多样性的影响. 生态学杂志, 2016, 35 (9): 2286- 2292. | |
| Kang X , Wang X M , Hou C Y , et al. Effect of size inequality on aboveground biomass and species diversity of plant communities. Chinese Journal of Ecology, 2016, 35 (9): 2286- 2292. | |
| 谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 2017, 41 (11): 1149- 1156. | |
| Tan L Z , Fan C Y , Fan X H . Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 2017, 41 (11): 1149- 1156. | |
| 谭珊珊, 王忍忍, 龚筱羚, 等. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 2017, 25 (10): 1054- 1064. | |
| Tan S S , Wang R R , Gong X L , et al. Scale dependent effects of species diversity and structural diversity onaboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 2017, 25 (10): 1054- 1064. | |
| 王轶夫. 2013. 基于神经网络的森林生物量估测模型研究. 北京: 北京林业大学硕士学位论文. | |
| Wang Y F. 2013. The study of forest biomass estimation model based on Neural Network. Beijing: MS thesis of Beijing Forestry University. [in Chinese] | |
| 吴初平, 韩文娟, 江波, 等. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性. 生物多样性, 2018, 26 (6): 545- 553. | |
| Wu C P , Han W J , Jing B , et al. Relationships between species richness and biomass/productivity dependon environmental factors in secondary forests of Dinghai, Zhejiang Province. Biodiversity Science, 2018, 26 (6): 545- 553. | |
| 吴兆飞, 张雨秋, 张忠辉, 等. 东北温带森林林分结构与生产力关系研究. 北京林业大学学报: 自然科学版, 2019, 41 (5): 48- 55. | |
| Wu Z F , Zhang Y C , Zhang Z H , et al. Study on the relationship between forest structure andproductivity of temperate forests in Northeast China. Journal of Beijing Forestry University: Nature Science Eidition, 2019, 41 (5): 48- 55. | |
| 尉文, 庞荣荣, 彭潔莹, 等.  太白山锐齿栎林地上生物量分布. 北京林业大学学报: 自然科学版, 2019, 41 (12): 1- 8. doi: 10.12171/j.1000-1522.20190326 | |
| Yu W ,  Pang R R ,  Peng J Y , et al.  Above-ground biomass distribution of Quercus aliena var. acutiserrata forest in Taibai Mountain. Journal of Beijing Forestry University: Nature Science Eidition, 2019, 41 (12): 1- 8. doi: 10.12171/j.1000-1522.20190326 | |
| 周国逸, 伊光彩, 唐旭利, 等. 中国森林生态系统碳储量-生物量方程. 北京: 科学出版社, 2018. | |
| Zhou G Y , Yin G C , Tang X L , et al. Carbon stocks in forest ecosystems in China: biomass equation. Beijing: Science Press, 2018. | |
| Ali A ,  Yan E R .  Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecological Indicators, 2017, 83, 158- 168. doi: 10.1016/j.ecolind.2017.07.054 | |
| Ali A ,  Yan E R ,  Chen H Y H , et al.  Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 2016, 13 (16): 4627- 4635. doi: 10.5194/bg-13-4627-2016 | |
| Bertness M D , Callaway R . Positive interactions in communities. Trends in Ecology & Evolution, 1994, 9 (5): 191- 193. | |
| Buongiorno J , Dahir S , Lu H , et al. Tree size diversity and economic returns in uneven-aged forest stands. Forest Science, 1994, 40 (1): 83- 103. | |
| Cavanaugh K C ,  Gosnell J S ,  Davis S L , et al.  Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography, 2014, 23 (5): 563- 573. doi: 10.1111/geb.12143 | |
| Chase J M ,  Leibold M A .  Spatial scale dictates the productivity-biodiversity relationship. Nature, 2002, 416 (6879): 427- 430. doi: 10.1038/416427a | |
| Dǎnescu A ,  Albrecht A T ,  Bauhus J .  Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 2016, 182 (2): 319- 333. doi: 10.1007/s00442-016-3623-4 | |
| Diaz S , Cabido M . Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 2001, 16 (11): 646- 655. | |
| Fahey R T ,  Fotis A T ,  Woods K D .  Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecological Applications, 2015, 25 (3): 834- 847. doi: 10.1890/14-1012.1 | |
| Ferry B ,  Morneau F O ,  Bontemps J , et al.  Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. Journal of Ecology, 2010, 98 (1): 106- 116. doi: 10.1111/j.1365-2745.2009.01604.x | |
| Fox J . Applied regression analysis and generalized linear models. London: Sage Publications, 2015. | |
| Fox J W .  The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity. Oikos, 2003, 102 (3): 630- 640. doi: 10.1034/j.1600-0706.2003.12618.x | |
| Fraser L H ,  Pither J ,  Jentsch A , et al.  Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349 (6245): 302- 305. doi: 10.1126/science.aab3916 | |
| Fridley J D .  Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia, 2002, 132 (2): 271- 277. doi: 10.1007/s00442-002-0965-x | |
| Fridley J D .  Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. Journal of Ecology, 2003, 91 (3): 396- 406. doi: 10.1046/j.1365-2745.2003.00775.x | |
| Gough C M , Vogel C S , Hardiman B , et al. Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession. Forest Ecology & Management, 2010, 260 (1): 36- 41. | |
| Grace J B ,  Anderson T M ,  Seabloom E W , et al.  Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529 (7586): 390- 393. doi: 10.1038/nature16524 | |
| Grime J P .  Competitive exclusion in herbaceous vegetation. Nature, 1973, 242 (5396): 344- 347. doi: 10.1038/242344a0 | |
| Grime J P .  Biodiversity and ecosystem function: the debate deepens. Science, 1997, 277 (5330): 1260- 1261. doi: 10.1126/science.277.5330.1260 | |
| Hardiman B S ,  Bohrer G ,  Gough C M , et al.  The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 2011, 92 (9): 1818- 1827. doi: 10.1890/10-2192.1 | |
| Hardiman B S ,  Gough C M ,  Halperin A , et al.  Maintaining high rates of carbon storage in old forests: a mechanism linking canopy structure to forest function. Forest Ecology and Management, 2013, 298, 111- 119. doi: 10.1016/j.foreco.2013.02.031 | |
| Hooper D U ,  Chapin F S ,  Ewel J J , et al.  Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 2005, 75 (1): 3- 35. doi: 10.1890/04-0922 | |
| Hu L ,  Bentler P M .  Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 1999, 6 (1): 1- 55. doi: 10.1080/10705519909540118 | |
| Huang Y Y ,  Chen Y X ,  CastroIzaguirre N , et al.  Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362 (6410): 80- 83. doi: 10.1126/science.aat6405 | |
| Ishii H T , Tanabe S , Hiura T . Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperature forest ecosystems. Forest Science, 2004, 50 (3): 342- 355. | |
| Lasky J R ,  Uriarte M ,  Boukili V K , et al.  The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 2014, 17 (9): 1158- 1167. doi: 10.1111/ele.12322 | |
| Liang J J , Crowther T W , Picard N , et al. Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354 (6309): 1- 15. | |
| Loreau M ,  Hector A .  Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412 (6842): 72- 76. doi: 10.1038/35083573 | |
| Loreau M ,  Naeem S ,  Inchausti P , et al.  Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 2001, 294 (5543): 804- 808. doi: 10.1126/science.1064088 | |
| Pach M , Podlaski R . Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands. Ecological Research, 2014, 30 (2): 367- 384. | |
| Paquette A ,  Messier C .  The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 2011, 20 (1): 170- 180. doi: 10.1111/j.1466-8238.2010.00592.x | |
| Prado-Junior J ,  Schiavini I ,  Vale V S D , et al.  Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 2016, 104 (3): 817- 827. doi: 10.1111/1365-2745.12543 | |
| Ratcliffe S ,  Wirth C ,  Jucker T , et al.  Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 2017, 20 (11): 1414- 1426. doi: 10.1111/ele.12849 | |
| Russo S E ,  Davies S J ,  King D A , et al.  Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 2005, 93 (5): 879- 889. doi: 10.1111/j.1365-2745.2005.01030.x | |
| Ryan M G ,  Stape J L ,  Binkley D , et al.  Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation. Forest Ecology and Management, 2010, 259 (9): 1695- 1703. doi: 10.1016/j.foreco.2010.01.013 | |
| Tilman D ,  Lehman C L ,  Thomson K T .  Plant diversity and ecosystem: productivity theoretical. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (5): 1857- 1861. doi: 10.1073/pnas.94.5.1857 | |
| Tobner C M ,  Paquette A ,  Gravel D , et al.  Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 2016, 19 (6): 638- 647. doi: 10.1111/ele.12600 | |
| Wardle D A .  No observational evidence for diversity enhancing productivity in Mediterranean shrublands. Oecologia, 2001, 129 (4): 620- 621. doi: 10.1007/s004420100753 | |
| Wu X , Wang X P , Tang Z Y , et al. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 2015, 386 (6): 602- 613. | |
| Xu W ,  Luo W X ,  Zhang C Y , et al.  Biodiversity-ecosystem functioning relationships of overstorey versus understorey trees in an old-growth temperate forest. Annals of Forest Science, 2019, 76 (3): 64. doi: 10.1007/s13595-019-0845-8 | |
| Yachi S ,  Loreau M .  Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 2007, 10 (1): 54- 62. doi: 10.1111/j.1461-0248.2006.00994.x | |
| Zhang Q ,  Niu J M ,  Buyantuyev A , et al.  Productivity-species richness relationship changes from unimodal to positive linear with increasing spatial scale in the lnner Mongolia steppe. Ecological Research, 2011, 26 (3): 649- 658. doi: 10.1007/s11284-011-0825-4 | |
| Zhang Y ,  Chen H Y H ,  Reich P B .  Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 2012, 100 (3): 742- 749. doi: 10.1111/j.1365-2745.2011.01944.x | |
| Zhang Y ,  Chen H Y H ,  Taylor A R .  Aboveground biomass of understorey vegetation has a negligible or negative association with overstorey tree species diversity in natural forests. Global Ecology and Biogeography, 2016, 25 (2): 141- 150. doi: 10.1111/geb.12392 | |
| Zhang Y ,  Chen H Y H ,  Taylor A R .  Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology, 2017, 31 (2): 419- 426. doi: 10.1111/1365-2435.12699 | 
| [1] | 赵鹏宇,白雪,燕平梅,赵晓东,武晓英,柴宝峰. 华北落叶松林土壤细菌群落结构与表型的环境异质性响应[J]. 林业科学, 2021, 57(7): 101-110. | 
| [2] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. | 
| [3] | 丁家祺,黄文丽,刘迎春,胡杨. 基于机器学习和多源数据的湘西北森林地上生物量估测[J]. 林业科学, 2021, 57(10): 36-48. | 
| [4] | 谢宪, 梁军, 朱彦鹏, 胡瑞瑞, 程元, 张星耀. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构[J]. 林业科学, 2020, 56(9): 51-57. | 
| [5] | 刘昌霖,周国英,肖柏,刘君昂. 降香黄檀心材和边材内生真菌多样性[J]. 林业科学, 2020, 56(4): 109-120. | 
| [6] | 周律,欧光龙,王俊峰,胥辉. 基于空间回归模型的思茅松林生物量遥感估测及光饱和点确定[J]. 林业科学, 2020, 56(3): 38-47. | 
| [7] | 胡宗达,刘世荣,刘兴良,罗明霞,胡璟,李亚非,余昊,欧定华,吴德勇. 川西亚高山3种天然次生林土壤有机碳氮组分特征[J]. 林业科学, 2020, 56(11): 1-11. | 
| [8] | 李林,魏识广,马姜明,叶万辉,练琚愉. 生境异质性和扩散限制对南亚热带常绿阔叶林群落物种多样性的相对作用[J]. 林业科学, 2020, 56(10): 1-10. | 
| [9] | 王安宁, 黄秋娴, 李晓刚, 徐学华, 李玉灵. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性[J]. 林业科学, 2019, 55(9): 130-141. | 
| [10] | 曹红雨, 高广磊, 丁国栋, 张英, 赵媛媛, 任悦, 陈宇轩, 郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118-127. | 
| [11] | 何怀江, 张忠辉, 张春雨, 郝珉辉, 姚杰, 解蛰, 高海涛, 赵秀海. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响[J]. 林业科学, 2019, 55(2): 1-12. | 
| [12] | 刘鲁霞, 庞勇, 任海保, 李增元. 基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性[J]. 林业科学, 2019, 55(2): 61-74. | 
| [13] | 曾伟生, 贺东北, 蒲莹, 肖前辉. 含地域和起源因子的马尾松立木生物量与材积方程系统[J]. 林业科学, 2019, 55(2): 75-86. | 
| [14] | 陈金磊, 方晰, 辜翔, 李雷达, 刘兆丹, 王留芳, 张仕吉. 中亚热带2种森林群落组成、结构及区系特征[J]. 林业科学, 2019, 55(2): 159-172. | 
| [15] | 扈梦梅,田龙,吴亚楠,杨晋宇,吕小翠,黄选瑞. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11): 153-162. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||