林业科学 ›› 2024, Vol. 60 ›› Issue (9): 1-11.doi: 10.11707/j.1001-7488.LYKX20240214
张志丹1(),曹治国2,闫广轩2,姚迪1,黄青青3,段劼3,王亚飞3,王凯3,郑泥3,*
收稿日期:
2024-04-23
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
郑泥
E-mail:1207639254@qq.com
基金资助:
Zhidan Zhang1(),Zhiguo Cao2,Guangxuan Yan2,Di Yao1,Qingqing Huang3,Jie Duan3,Yafei Wang3,Kai Wang3,Ni Zheng3,*
Received:
2024-04-23
Online:
2024-09-25
Published:
2024-10-08
Contact:
Ni Zheng
E-mail:1207639254@qq.com
摘要:
目的: 探究不同树种在叶片和冠层尺度上吸滞大气颗粒物的特征,解析相同污染背景下不同树种单叶和林分冠层对大气颗粒物吸滞特征的变异,为营建能够高效吸滞大气颗粒物的城市森林提供理论依据。方法: 对北京市五环路周围具有代表性的平原风景游憩林进行调查后,选择奥林匹克公园内5片典型风景游憩林(华山松-银杏混交林、毛白杨-白蜡混交林、旱柳纯林、毛白杨纯林、多树种复层针阔混交林)作为研究对象,采用洗脱称量粒度分析法得到各树种单位叶面积大气颗粒物吸滞量,通过叶面积指数计算每公顷各树种对不同径级颗粒物的吸滞量,依据各树种冠层占整个林分冠层的面积比例计算纯林或混交林单位面积林分对不同径级颗粒物的吸滞量。结果: 不同林分各树种叶片吸滞大气颗粒物的粒径分布特征存在显著差异,单位面积叶片颗粒物吸滞量在树种间的差异随颗粒物径级和林分类型有所改变。单叶尺度上,各树种对不同径级大气颗粒物的吸滞能力综合排序为银杏>圆柏>元宝枫>栾树>华山松>侧柏>白蜡>旱柳>毛白杨。不同林分冠层对大气颗粒物的吸滞能力差异明显,相差倍数高达20倍左右;各类型林分单位面积的大气颗粒物吸滞量大小不随颗粒物径级而变化,对所有径级颗粒物均为华山松-银杏混交林的吸滞量最高,然后依次为多树种针阔混交林、旱柳纯林、毛白杨-白蜡混交林和毛白杨纯林。结论: 本研究9个树种中,银杏、圆柏和元宝枫为高滞尘树种,栾树、华山松和侧柏为中等滞尘树种,白蜡、旱柳和毛白杨为低滞尘树种;能够对大气颗粒物进行高效吸滞的林分结构特征为含多个高滞尘树种+具有多层林冠+林木疏密相间,欲使城市森林发挥其大气颗粒物吸滞效能,需同时关注高滞尘树种选择及合理林分结构设计。
中图分类号:
张志丹,曹治国,闫广轩,姚迪,黄青青,段劼,王亚飞,王凯,郑泥. 北京5种典型风景游憩林的大气颗粒物吸滞特征[J]. 林业科学, 2024, 60(9): 1-11.
Zhidan Zhang,Zhiguo Cao,Guangxuan Yan,Di Yao,Qingqing Huang,Jie Duan,Yafei Wang,Kai Wang,Ni Zheng. Characterization of Retention of Atmospheric Particles by Five Typical Scenic Recreational Forests in Beijing[J]. Scientia Silvae Sinicae, 2024, 60(9): 1-11.
表1
各试验林分的结构特征与树木生长状况①"
林分 编号 Stand ID | 林分类型 Stand type | 树种组成 Tree species composition | 平均树高 Average tree height/m | 平均胸径 Average DBH/cm | 郁闭度 Canopy density |
Ⅰ | 针阔混交林 Coniferous and broad-leaved mixed forest | 5华山松5银杏 5P. armandii 5G. biloba | 6.2/11.8 | 14.8/18.2 | 0.6 |
II | 阔叶混交林 broad-leaved mixed forest | 5毛白杨5白蜡 5P . tomentosa 5F . chinensis | 19.4/14.3 | 22.8/21.1 | 0.8 |
Ⅲ | 阔叶纯林 Pure broad-leaved forest | 10旱柳 10S . matsudana | 10.3 | 16 | 0.7 |
Ⅳ | 阔叶纯林 Pure broad-leaved forest | 10毛白杨 10P . tomentosa | 19.6 | 27.3 | 0.8 |
V | 多树种复层针阔混交林 Multi-tree layered conifer-broadleaf mixed forest | 4毛白杨3圆柏1侧柏 1白蜡1元宝枫+旱柳+栾树 4P . tomentosa 3S . chinensis 1P . orientalis 1F . chinensis 1A . truncatum+S . matsudana+ K . paniculata | 22.1/8.6/ 8.1/15.6/ 9.3/13.0/9.6 | 28.3/15.2/ 13.4/19.4/ 13.5/19.3/13.3 | 0.9 |
表2
不同类型林分各树种叶面颗粒物的粒径分布特征"
林分 Stand | 树种 Species | 粒径范围 Particle rage/μm | 粒径峰值 Peak particle size/μm | 粒径均值 Average particle size/μm |
Ⅰ | 华山松P. armandii | 0.38~133.75 | 22.73 | 19.6 |
银杏G. biloba | 0.38~83.90 | 20.71 | 15.4 | |
Ⅱ | 毛白杨P. tomentosa | 0.38~101.10 | 22.73 | 17.8 |
白蜡F. chinensis | 0.38~110.99 | 18.86 | 17.1 | |
Ⅲ | 旱柳S. matsudana | 0.38~194.23 | 24.95 | 31.4 |
Ⅳ | 毛白杨P. tomentosa | 0.38~101.10 | 11.83 | 16.2 |
Ⅴ | 毛白杨P. tomentosa | 0.38~133.75 | 10.78 | 19.1 |
旱柳S. matsudana | 0.38~256.95 | 22.73 | 35.7 | |
白蜡F. chinensis | 0.38~213.22 | 22.73 | 27.9 | |
圆柏S. chinensis | 0.38~146.82 | 11.83 | 17.2 | |
侧柏P. orientalis | 0.38~234.07 | 30.07 | 36.2 | |
栾树K. paniculata | 0.38~213.22 | 24.95 | 32.7 | |
元宝枫A. truncatum | 0.38~256.95 | 36.24 | 38.3 |
表3
不同树种对各径级颗粒物的吸滞能力排序"
排序Rank | PM2.5 | PM10 | TSP |
1 | 华山松P. armandii | 银杏G. biloba | 元宝枫A. truncatum |
2 | 银杏G. biloba | 圆柏S. chinensis | 银杏G. biloba |
3 | 圆柏S. chinensis | 元宝枫A. truncatum | 栾树K. paniculata |
4 | 元宝枫A. truncatum | 栾树K. paniculata | 圆柏S. chinensis |
5 | 栾树K. paniculata | 华山松P. armandii | 华山松P. armandii |
6 | 白蜡F. chinensis | 侧柏P. orientalis | 侧柏P. orientalis |
7 | 毛白杨P. tomentosa | 白蜡F. chinensis | 旱柳S. matsudana |
8 | 侧柏P. orientalis | 旱柳S. matsudana | 白蜡F. chinensis |
9 | 旱柳S. matsudana | 毛白杨P. tomentosa | 毛白杨P. tomentosa |
阿丽亚·拜都热拉, 玉米提·哈力克, 塔依尔江·艾山, 等. 2015. 干旱区绿洲城市主要绿化树种最大滞尘量对比, 林业科学, 51(3): 57−64. | |
Aliya B, Umut H, Tayierjiang A, et al. 2015. Maximum dust retention of main greening trees in arid land oasis cities, northwest China. Scientia Silvae Sinicae, 51(3): 57−64. [in Chinese] | |
曹宏亮, 殷 杉, 章旭毅, 等. 基于UFORE模型的上海城市森林对大气PM2.5的削减量估算. 上海交通大学学报(农业科学版), 2016, 34 (5): 76- 83. | |
Cao H L, Yin S, Zhang X Y, et al. Modeled PM2.5 removal by urban forest in Shanghai. Journal of Shanghai JiaoTong University (Agricultural Science), 2016, 34 (5): 76- 83. | |
范舒欣, 晏 海, 齐石茗月, 等. 北京市26种落叶阔叶绿化树种的滞尘能力. 植物生态学报, 2015, 39 (7): 736- 745.
doi: 10.17521/cjpe.2015.0070 |
|
Fan S X, Yan H, Qi-Shi M Y, et al. Dust retention capacity of 26 deciduous broad-leaved greening tree species in Beijing. Chinese Journal of Plant Ecology, 2015, 39 (7): 736- 745.
doi: 10.17521/cjpe.2015.0070 |
|
樊 艺, 徐程扬. 城市森林结构与削减空气中PM2.5和PM10的耦合关系——以北京市海淀区中关村森林公园为例. 河北农业大学学报, 2023, 46 (5): 118- 128. | |
Fan Y, Xu C Y. Coupling structures of urban forest with air PM2.5 and PM10 reduction: a case study on Zhongguancun country park in Haidian, Beijing. Journal of Hebei Agricultural University, 2023, 46 (5): 118- 128. | |
高金晖, 王冬梅, 赵 亮, 等. 2007. 植物叶片滞尘规律研究: 以北京市为例. 北京林业大学学报, 29(2): 94−99. | |
Gao J H, Wang D M, Zhao L, et al. 2007. Airborne dust detainment by different plant leaves: taking Beijing as an example. Journal of Beijing Forestry University, 29(2): 94−99. [in Chinese] | |
古 琳, 王 成, 王艳英, 等. 夏季持续高温天气下无锡惠山游憩林内空气颗粒物变化特征. 林业科学, 2013, 49 (10): 66- 73. | |
Gu L, Wang C, Wang Y Y, et al. Variation in particle matters of recreational forests by the continued high temperature weather in Hui Mountain of Wuxi city. Scientia Silvae Sinicae, 2013, 49 (10): 66- 73. | |
郭二果, 王 成, 彭镇华, 等. 北京西山三种典型游憩林春季空气颗粒物日变化规律. 林业科学, 2009, 45 (6): 145- 148. | |
Guo E G, Wang C, Peng Z H, et al. Diurnal variation of airborne particulate matter in 3 typical recreation forests in west Mountain of Beijing area in spring. Scientia Silvae Sinicae, 2009, 45 (6): 145- 148. | |
郭亚男, 王爱霞, 邢建勋, 等. 不同季节路侧紫丁香绿带滞尘机制研究. 西北林学院学报, 2023, 38 (5): 279- 288.
doi: 10.3969/j.issn.1001-7461.2023.05.36 |
|
Guo Y N, Wang A X, Xing J X, et al. Dust retention mechanism of Syringa oblata green belt on roadsides in different seasons. Journal of Northwest Forestry University, 2023, 38 (5): 279- 288.
doi: 10.3969/j.issn.1001-7461.2023.05.36 |
|
韩冬荟. 2021. 城市森林及气候因子对大气颗粒物沉降影响研究. 哈尔滨: 东北林业大学. | |
Han D H. 2021. Effects of urban forests and meteorological factors on particulate matter deposition. Harbin: Northeast Forestry University. [in Chinese] | |
凯丽比努尔·努尔麦麦提, 玉米提·哈力克, 娜斯曼·那斯尔丁, 等. 乌鲁木齐市快速路绿化树种滞尘量与叶片结构特性分析. 西北林学院学报, 2022, 37 (2): 60- 67.
doi: 10.3969/j.issn.1001-7461.2022.02.08 |
|
Kalbinur N, Umuti H, Nasiman N, et al. Dust retention amount and leaf micro morphological structure of the greening species in the frostbelt along the expressway in Urumqi. Journal of Northwest Forestry University, 2022, 37 (2): 60- 67.
doi: 10.3969/j.issn.1001-7461.2022.02.08 |
|
李慧君, 李宏彬, 王 艳, 等. 大气颗粒物中微生物群落多样性及危害研究进展. 新乡医学院学报, 2015, 32 (2): 107- 110.
doi: 10.7683/xxyxyxb.2015.02.004 |
|
Li H J, Li H B, Wang Y, et al. Research progress on microbial community diversity and hazards in atmospheric particles. Journal of Xinxiang Medical University, 2015, 32 (2): 107- 110.
doi: 10.7683/xxyxyxb.2015.02.004 |
|
梁 丹, 王 彬, 王云琦, 等. 北京市典型绿化灌木阻滞吸附PM2.5能力研究. 环境科学, 2014, 35 (9): 3605- 3611. | |
Liang D, Wang B, Wang Y Q, et al. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5. Environmental Science, 2014, 35 (9): 3605- 3611. | |
李笑寒, 穆 森, 张 祥, 等. 北方城市绿地对大气颗粒物浓度的削减作用对比研究. 生态学报, 2024, 44 (10): 1- 13. | |
Li X H, Mu S, Zhang X, et al. Comparison of the reduction effects of green space on atmospheric particulate matter concentration in northern cities. Acta Ecologica Sinica, 2024, 44 (10): 1- 13. | |
刘欢欢, 曹治国, 贾黎明, 等. 基于超声清洗的植物叶片吸滞大气颗粒物定量评估——以银杏为例. 林业科学, 2016, 52 (12): 133- 140.
doi: 10.11707/j.1001-7488.20161216 |
|
Liu H H, Cao Z G, Jia L M, et al. Analysis of the role of ultrasonic cleaning in quantitative evaluation of the retention of tree leaves to atmospheric particles: a case study with Ginkgo biloba. Scientia Silvae Sinicae, 2016, 52 (12): 133- 140.
doi: 10.11707/j.1001-7488.20161216 |
|
刘金强, 曹治国, 郭泽敏, 等. 植物叶片表面水溶与非水溶性颗粒物滞纳量分离定量评估——以5种树种为例. 应用生态学报, 2019, 30 (5): 1763- 1771. | |
Liu J Q, Cao Z G, Guo Z M, et al. Quantitative evaluation for separation of water-soluble and water-insoluble particulate matter on leaf surface of tree species: taking five tree species as examples. Chinese Journal of Applied Ecology, 2019, 30 (5): 1763- 1771. | |
刘金强, 曹治国, 刘欢欢, 等. 基于超声清洗的树木叶面颗粒物粒径分布与吸滞效率研究——以银杏和油松为例. 植物生态学报, 2016, 40 (8): 798- 809.
doi: 10.17521/cjpe.2016.0100 |
|
Liu J Q, Cao Z G, Liu H H, et al. Ultrasonic based investigation on particle size distribution and retention efficiency of particulate matters retained on tree leaves: taking Ginkgo biloba and Pinus tabuliformis as examples. Chinese Journal of Plant Ecology, 2016, 40 (8): 798- 809.
doi: 10.17521/cjpe.2016.0100 |
|
王 兵, 张维康, 牛 香, 等. 北京10个常绿树种颗粒物吸附能力研究. 环境科学, 2015, 36 (2): 408- 414. | |
Wang B, Zhang W K, Niu X, et al. Particulate matter adsorption capacity of 10 evergreen species in Beijing. Environmental Science, 2015, 36 (2): 408- 414. | |
王会霞, 王彦辉, 杨 佳, 等. 不同绿化树种滞留PM2.5等颗粒污染物能力的多尺度比较. 林业科学, 2015, 51 (7): 9- 20.
doi: 10.11707/j.1001-7488.20150702 |
|
Wang H X, Wang Y H, Yang J, et al. Multi-scale comparisons of particulate matter and its size fractions deposited on leaf surfaces of major greening tree species. Scientia Silvae Sinicae, 2015, 51 (7): 9- 20.
doi: 10.11707/j.1001-7488.20150702 |
|
王科朴, 张语克, 刘雪华. 北京城市绿地对大气颗粒物的削减量计算. 环境科学与技术, 2020, 43 (4): 121- 129. | |
Wang K P, Zhang Y K, Liu X H. Modeled particulate matters removal by urban green lands in Beijing. Environmental Science & Technology, 2020, 43 (4): 121- 129. | |
王晓磊, 王 成. 城市森林调控空气颗粒物功能的研究现状与展望. 生态学报, 2014, 34 (8): 1910- 1921. | |
Wang X L, Wang C. Research status and prospects on functions of urban forests in regulating the air particulate matter. Acta Ecologica Sinica, 2014, 34 (8): 1910- 1921. | |
王赞红, 李纪标. 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态. 生态环境, 2006, 15 (2): 327- 330. | |
Wang Z H, Li J B. Capacity of dust uptake by leaf surface of Euonymus Japonicus Thunb. and the morphology of captured particle in air polluted city. Ecology and Environment Sciences, 2006, 15 (2): 327- 330. | |
吴海龙, 余新晓, 师 忱, 等. PM2.5特征及森林植被对其调控研究进展. 中国水土保持科学, 2012, 10 (6): 116- 122. | |
Wu H L, Yu X X, Shi C, et al. Advances in the study of PM2.5 characteristic and the regulation of forests to PM2.5. Science of Soil and Water Conservation, 2012, 10 (6): 116- 122. | |
吴志萍, 王 成, 侯晓静, 等. 6种城市绿地空气PM2.5浓度变化规律的研究. 安徽农业大学学报, 2008, 35 (4): 494- 498. | |
Wu Z P, Wang C, Hou X J, et al. Variation of air PM2.5 concentration in six urban greenlands. Journal of Anhui Agricultural University, 2008, 35 (4): 494- 498. | |
肖 玉, 王 硕, 李 娜, 等. 北京城市绿地对大气PM2.5的削减作用. 资源科学, 2015, 37 (6): 1149- 1155. | |
Xiao Y, Wang S, Li N, et al. Atmospheric PM2.5 removal by green spaces in Beijing. Resources Science, 2015, 37 (6): 1149- 1155. | |
张维康, 王 兵, 牛 香. 北京不同污染地区园林植物对空气颗粒物的滞纳能力. 环境科学, 2015, 36 (7): 2381- 2388. | |
Zhang W K, Wang B, Niu X. Adsorption capacity of the air particulate matter in urban landscape plants in different polluted regions of Beijing. Environmental Science, 2015, 36 (7): 2381- 2388. | |
张志丹. 2016. 北京市典型林分对PM2.5等大气颗粒物调控作用研究. 北京: 北京林业大学. | |
Zhang Z D. 2016. Studies on regulation of typical forests to PM2.5 and other atmospheric particulate matter in Beijing. Beijing: Beijing Forestry University. | |
张志丹, 曹治国, 贾黎明. 北京4种典型风景游憩林对林内PM2.5的调控作用. 应用生态学报, 2015, 26 (11): 3475- 3481. | |
Zhang Z D, Cao Z G, Jia L M. Regulation of four typical scenic recreational plantations to stand PM2.5 concentration in Beijing, China. Chinese Journal of Applied Ecology, 2015, 26 (11): 3475- 3481. | |
张志丹, 席本野, 曹治国, 等. 植物叶片吸滞PM2.5等大气颗粒物定量研究方法初探——以毛白杨为例. 应用生态学报, 2014, 25 (8): 2238- 2242. | |
Zhang Z D, Xi B Y, Cao Z G, et al. Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example. Chinese Journal of Applied Ecology, 2014, 25 (8): 2238- 2242. | |
张子宜. 2012. 吉林省典型城市大气颗粒物中PAHs分布特征研究. 长春: 吉林大学. | |
Zhang Z Y. 2012. Study on the distribution characteristics of PAHs in particulate matter in typical cities of Jilin Province. Changchun: Jilin University. [in Chinese] | |
Cao Z G, Yu G, Chen Y S, et al. Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International, 2012, 49, 24- 30.
doi: 10.1016/j.envint.2012.08.010 |
|
Chen Y, Ebenstein A, Greenstone M, et al. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (32): 12936- 12941. | |
Hu W, Tallon L K, Si B C. Evaluation of time stability indices for soil water storage upscaling. Journal of Hydrology, 2012, 475, 229- 241.
doi: 10.1016/j.jhydrol.2012.09.050 |
|
Kim K, Jeon J, Jung H, et al. PM2.5 reduction capacities and their relation to morphological and physiological traits in 13 landscaping tree species. Urban Forestry & Urban Greening, 2022, 70, 127526. | |
Liu J Q, Cao Z G , Zou S Y, et al. 2018. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Science of Total Environment, 616/617: 417–426. | |
Liu X H, Yu X X, Zhang Z M. PM2.5 concentration differences between various forest types and its correlation with forest structure. Atmosphere, 2015, 6 (11): 1801- 1815.
doi: 10.3390/atmos6111801 |
|
Mochida A, Talata Y, Iwata T, et al. Examining tree canopy models for CFD prediction of wind environment at pedestrian level. Joumal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (10/11): 1667- 1677. | |
Nowak D J, Crane D E, Stevens J C. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 2006, 4 (3/4): 115- 123. | |
Nowak D J, Hirabayashi S, Bodine A, et al. Modeled PM2.5 removal by trees in ten U. S. cities and associated health effects. Environmental Pollution, 2013, 178, 395- 402.
doi: 10.1016/j.envpol.2013.03.050 |
|
Popek R, Przybysza A, Gawrońska H, et al. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicology and Environmental Safety, 2018, 163, 56- 62.
doi: 10.1016/j.ecoenv.2018.07.051 |
|
Przybysz A, Sæbø A, Hanslin H M, et al. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Science of the Total Environment, 2014, 481, 360- 369.
doi: 10.1016/j.scitotenv.2014.02.072 |
|
Sæbø A, Popek R, Nawrot B, et al. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 2012, 427/428, 347- 354.
doi: 10.1016/j.scitotenv.2012.03.084 |
|
Song Y S, Maher B A, Li F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmospheric Environment, 2015, 105, 53- 60.
doi: 10.1016/j.atmosenv.2015.01.032 |
|
Tiwary A, Sinnett D, Peachey C, et al. An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: a case study in London. Environmental Pollution, 2009, 157 (10): 2645- 2653.
doi: 10.1016/j.envpol.2009.05.005 |
|
Wang H X, Maher B A, Ahmed I A, et al. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: implications for roadside planting for improving the quality of urban air. Environmental Science & Technology, 2019, 53 (12): 6906- 6916. | |
Yang J, McBride J, Zhou J X, et al. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 2005, 3 (2): 65- 78. | |
Yue C, Cui K D, Duan J, et al. The retention characteristics for water-soluble and water-insoluble particulate matter of five tree species along an air pollution gradient in Beijing, China. Science of the Total Environment, 2021, 767, 145497.
doi: 10.1016/j.scitotenv.2021.145497 |
[1] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[2] | 龙时胜, 曾思齐, 杨盛扬. 基于改进林分密度指数的栎类天然林最大密度线[J]. 林业科学, 2023, 59(9): 13-22. |
[3] | 周相贝, 李春干, 代华兵, 余铸, 李振, 苏凯. 点云密度对机载激光雷达大区域亚热带森林参数估测精度的影响[J]. 林业科学, 2023, 59(9): 23-33. |
[4] | 杨晓慧,吴金卓,刘浩然,钟浩,林文树. 基于UAV-LiDAR的人工林林分郁闭度估测[J]. 林业科学, 2023, 59(8): 12-21. |
[5] | 柳帅,张德旭,张安安,李哲,龙文兴,臧润国,张志东,陈远,冯广,陈玉凯. 海南长臂猿现有天然林栖息地与松树林潜在栖息地的植物物种多样性比较[J]. 林业科学, 2023, 59(7): 115-127. |
[6] | 郭泽鑫,胡中岳,曹聪,刘萍. 广东主要森林类型林分生物量和碳储量模型研建[J]. 林业科学, 2023, 59(12): 37-50. |
[7] | 颜培栋,李鹏,杨章旗,黄绥理,周永斌,零天旺. 不同造林密度马尾松人工林分化特征及其对生产力的影响[J]. 林业科学, 2023, 59(10): 66-75. |
[8] | 郑光楠,杨秀好,韦曼丽,郑霞林. 广西松褐天牛成虫种群动态规律及其与林分和气象因子相关性[J]. 林业科学, 2023, 59(1): 128-142. |
[9] | 曹国军,李嘉昕,赵凤君,舒立福,叶江霞. 森林计划烧除的PM2.5排放时空过程模拟及其对空气质量的影响[J]. 林业科学, 2022, 58(8): 63-75. |
[10] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
[11] | 黄绍娴,王宏翔,彭辉,王耀仪,李远发,叶绍明. 雅长保护区老龄林树种空间优势度二阶特征分析[J]. 林业科学, 2022, 58(4): 128-140. |
[12] | 陈星京,冯林艳,张宇超,刘清旺,杨朝晖,符利勇,白晋华. 基于机载激光雷达的崇礼冬奥核心区林分地上生物量反演[J]. 林业科学, 2022, 58(10): 35-46. |
[13] | 王金池,黄清麟,严铭海,黄如楚,郑群瑞. 由巨桉人工林转型的13年生青冈栎天然林特征[J]. 林业科学, 2021, 57(9): 13-20. |
[14] | 薛海连,田相林,曹田健. 利用经验-过程混合建模方法优化华山松过程模型的参数[J]. 林业科学, 2021, 57(9): 21-33. |
[15] | 刘文桢,袁一超,张连金,赵中华. 基于林分内部状态与邻域环境的油松林稳定性评价[J]. 林业科学, 2021, 57(9): 76-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||