林业科学 ›› 2025, Vol. 61 ›› Issue (5): 120-130.doi: 10.11707/j.1001-7488.LYKX20230561
宋雯1,刘永强1,姚雪宁2,师振萍1,杭宇杰1,郭红彦1,*(),王林1,*(
)
收稿日期:
2023-11-22
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
郭红彦,王林
E-mail:Ghybjh2004@163.com;lwanger@163.com
基金资助:
Wen Song1,Yongqiang Liu1,Xuening Yao2,zhenping Shi1,Yujie Hang1,hongyan Guo1,*(),Lin Wang1,*(
)
Received:
2023-11-22
Online:
2025-05-20
Published:
2025-05-24
Contact:
hongyan Guo,Lin Wang
E-mail:Ghybjh2004@163.com;lwanger@163.com
摘要:
目的: 研究枣疯病对枣树水力结构和碳代谢的影响,揭示枣疯病的病理机制及其对枣树生理的影响,同时为制定有针对性的管理措施提供理论依据。方法: 以壶瓶枣树为研究对象,测定健康枣树、轻度枣疯病树、重度枣疯病树的叶片和枝条的最大水力学导度(Kmax)、水力脆弱性(P50)和茎叶导水组织的形态解剖特征,并比较3种类型枣树冬春季(11月—次年4月)和生长季(6月)的水势、枝条导水损失率(PLC)、气体交换参数、非结构性碳水化合物(NSC)含量。结果: 随着症状的加重,枣树的枝条和叶片Kmax均明显降低,P50均明显升高,轻度枣疯病树和重度枣疯病树的枝条Kmax较健康枣树分别降低40.75%和80.61%,其叶片Kmax较健康枣树分别降低12.25%和29.44%;轻度枣疯病树和重度枣疯病树的枝条P50较健康枣树分别上升0.18 MPa和0.63 MPa,其叶片P50较健康枣树分别上升0.15 MPa和0.31 MPa。随着病情的加重,枝条导管壁厚度和抗塌陷指数均呈显著降低,重度枣疯病树的枝条木材密度和导管直径均显著低于健康枣树。在冬春季和生长季,随着病情的加重,枝条PLC显著增加,枝条韧皮部含水量、韧皮部细胞活力、枝条韧皮部和木质部NSC含量均显著降低;生长季叶片的光合速率、气孔导度和蒸腾速率均显著降低,轻度枣疯病树和重度枣疯病树的叶净光合速率较健康枣树分别下降25.68%、52.98%。结论: 枣疯病树的枝条和叶片水力学导度降低主要与导管直径减小有关,水力安全性降低主要与导管壁厚度、导管抗塌陷指数和木材密度降低有关,这可能由碳供应不足引起;水分输导能力和安全性降低影响冬春季和生长季的树体水分状况,限制光合作用,造成碳限制,进一步限制枣树的生长和对逆境的适应能力。碳限制和水力限制的共同作用是导致发病枣树生长变差、出现枯死的重要原因。
中图分类号:
宋雯,刘永强,姚雪宁,师振萍,杭宇杰,郭红彦,王林. 枣疯病对枣树茎叶水力性状和碳代谢的影响[J]. 林业科学, 2025, 61(5): 120-130.
Wen Song,Yongqiang Liu,Xuening Yao,zhenping Shi,Yujie Hang,hongyan Guo,Lin Wang. Effects of Witches’ Broom Disease on Hydraulic Properties and Carbon Metabolism of Jujube Branches and Leaves[J]. Scientia Silvae Sinicae, 2025, 61(5): 120-130.
表1
各类型枣树茎叶的Kmax和P50①"
类型Type | 叶leaves | 茎Branches | P50差值 | |||
Kmax / (mmol·m–1s–1 MPa–1) | P50 / MPa | Kmax / (kg·m–1s–1 MPa–1×10?5) | P50 / MPa | P50 leaf-branch / MPa | ||
健康枣树 Healthy Jujube trees | 51.26 | ?1.36 | 5.57±0.62 a | ?1.95 | ?0.59 | |
轻度枣疯病树 Mild diseased Jujube trees | 44.98 | ?1.21 | 3.30±0.58 b | ?1.77 | ?0.56 | |
重度枣疯病 Severe diseased Jujube trees | 36.17 | ?1.04 | 1.08±0.23 c | ?1.33 | ?0.28 |
表2
枣疯病对枣树茎叶导水组织解剖性状的影响①"
测定指标Measurement | 健康枣树 Healthy Jujube trees | 轻度枣疯病 Mild Diseased Jujube trees | 重度枣疯病 Severe Diseased Jujube trees |
单叶面积 Leaf area /mm2 | 725.16±102.21b | 245.44±41.70c | |
比叶质量 LMA /(×10?5g·cm2) | 5.98±0.55c | 6.60±0.77b | 7.68±1.05a |
叶脉导管直径 Leaf vessel diameter /μm | 18.21±2.38a | 13.92±1.98b | 9.08±1.69c |
木材密度 Wood density /(g·cm3) | 0.67±0.03a | 0.65±0.04a | 0.47±0.03b |
枝条导管直径 Branch vessel diameter /μm | 29.41±1.41b | 33.95±0.91a | 13.62±0.72c |
枝条导管密度 Branch vessel density /×10?5mm2 | 11.7±2.57b | 9.16±0.30b | 21.8±2.31a |
枝条导管壁厚度 Branch vessel wall thickness /μm | 4.56±0.76a | 2.49±0.53b | 1.35±0.26c |
枝条导管抗塌陷指数 Branch (t/b)3 /×10?3 | 15.86±0.27a | 7.62±0.91b | 2.84±0.50c |
枝条射线薄壁细胞面积 Area of ray parenchyma cell /μm2 | 209.58±31.66a | 159.71±22.84b | 33.22±6.86c |
枝条轴向薄壁细胞面积 Areas of axial parenchyma cell /μm2 | 75.68±9.83a | 71.06±12.05a | 19.23±4.21b |
纤维细胞面积 Areas of fiber cell /μm2 | 60.69±10.21a | 74.81±12.88a | 27.78±7.14b |
枝条纤维细胞壁厚 Branch fiber cell wall diameter /μm | 1.73±0.40a | 0.97±0.12b | 0.48±0.06c |
枝条导管面积占比 Proportion of vessel area (%) | 8.17±1.36b | 7.88±0.87b | 1.08±0.76a |
枝条薄壁细胞面积占比 Proportion of parenchyma area (%) | 24.99±1.39b | 25.35±1.99b | 39.40±1.92a |
枝条纤维细胞面积占比 Proportion of fiber area (%) | 66.83±1.83a | 66.77±2.64a | 49.51±1.16b |
陈玉鑫, 张钰析, 刘锦春, 等. 枣疯病研究进展. 延安大学学报(自然科学版), 2023, 42 (1): 90- 95. | |
Chen Y X, Zhang Y X, Liu J C, et al. Research progress on Jujube Witches’Broom. Journal of Yan’an University(Natural Science Edition), 2023, 42 (1): 90- 95. | |
李金鑫, 张一南, 苗瑞芬, 等. 烂皮病菌侵染对新疆杨光合特性及碳水代谢的影响. 林业科学研究, 2021, 34 (5): 58- 68. | |
Li J X, Zhang Y N, Miao R F, et al. Effects of Valsa sordida infection on photosynthetic characteristics and carbon-water metabolism in Populus alba var. Pyramidalis. Forest Research, 2021, 34 (5): 58- 68. | |
李俊鹏, 李海波, 王 林. 中国沙棘根尖功能特征对坡位和动物啃食枝叶的响应. 生态学报, 2023, 43 (17): 7118- 7127. | |
Li J P, Li H B, Wang L. Response of root tip function characteristics of Hippophae rhamnoides subsp. sinensis Rousi to slope position and herbivores grazing on branches and leaves. Acta Ecologica Sinica, 2023, 43 (17): 7118- 7127. | |
刘孟军, 赵 锦, 周俊义. 枣疯病病情分级体系研究. 河北农业大学学报, 2006, 29 (1): 31- 33.
doi: 10.3969/j.issn.1000-1573.2006.01.009 |
|
Liu M J, Zhao J, Zhou J Y. Grading system of jujube witches’broom symptom. journal of agricultural university of hebei, 2006, 29 (1): 31- 33.
doi: 10.3969/j.issn.1000-1573.2006.01.009 |
|
刘孟军, 赵 锦, 周俊义. 2010. 枣疯病. 北京: 中国农业出版社 . | |
Liu M, Zhao J, Zhou J. 2010. Jujube witches’ broom disease. Beijing: China Agriculture Press. [in Chinese] | |
田国忠, 张志善, 李志清, 等. 我国不同地区枣疯病发生动态和主导因子分析. 林业科学, 2002, 38 (2): 83- 91.
doi: 10.3321/j.issn:1001-7488.2002.02.015 |
|
Tian G Z, Zhang Z S, Li Z Q, et al. Dynamic of jujube Witches' Broom Disease and factors of great influence at ecologically different regions in China. Scientia Silvae Sinicae, 2002, 38 (2): 83- 91.
doi: 10.3321/j.issn:1001-7488.2002.02.015 |
|
王 林, 代永欣, 樊兴路, 等. 风对黄花蒿水力学性状和生长的影响. 生态学报, 2015, 35 (13): 4454- 4461. | |
Wang L, Dai Y X, Fan X L, et al. Effects of wind on hydraulic properties and growth of Artemisia annua Linn. Acta Ecologica Sinica, 2015, 35 (13): 4454- 4461. | |
赵 锦, 刘孟军, 代 丽, 等. 枣疯病病树中内源激素的变化研究. 中国农业科学, 2006, 39 (11): 2255- 2260.
doi: 10.3321/j.issn:0578-1752.2006.11.014 |
|
Zhao J, Liu M J, Dai L, et al. The variations of endogenous hormones in Chinese jujube infected with Witches' Broom Disease. Scientia Agricultura Sinica, 2006, 39 (11): 2255- 2260.
doi: 10.3321/j.issn:0578-1752.2006.11.014 |
|
张丽君, 冯殿齐, 王玉山, 等. 枣疯病病树光合特性的初步研究. 山西农业大学学报(自然科学版), 2010, 30 (2): 129- 132. | |
Zhang L J, Feng D Q, Wang Y S, et al. Preliminary study on the photosynthetic characteristics of jujube Witches' Broom Trees. Journal of Shanxi Agricultural University(Natural Science Edition), 2010, 30 (2): 129- 132. | |
张军周, 勾晓华, 赵志千, 等. 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 2013, 37 (10): 972- 977. | |
Zhang J Z, Gou X H, Zhao Z Q, et al. Improved method of obtaining micro-core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 2013, 37 (10): 972- 977. | |
Aubrey D P, Teskey R O. Stored root carbohydrates can maintain root respiration for extended periods. New Phytologist, 2018, 218 (1): 142- 152.
doi: 10.1111/nph.14972 |
|
Aritsara A N A, Wang S, Li B N, et al. Divergent leaf and fine root “pressure–volume relationships” across habitats with varying water availability. Plant Physiology, 2022, 190 (4): 2246- 2259.
doi: 10.1093/plphys/kiac403 |
|
Bortolami G, Ferrer N, Baumgartner K, et al. Esca grapevine disease involves leaf hydraulic failure and represents a unique premature senescence process. Tree Physiology, 2023, 43 (3): 441- 451.
doi: 10.1093/treephys/tpac133 |
|
Brodribb T J, Holbrook N M. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant physiology, 2003, 132 (4): 2166- 2173.
doi: 10.1104/pp.103.023879 |
|
Brodersen C R, McElrone A J. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Frontiers in plant science, 2013, 4, 108. | |
Chen W, Yao X, Cai K, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological trace element research, 2011, 142 (1): 67- 76.
doi: 10.1007/s12011-010-8742-x |
|
Chen Z, Zhu S, Zhang Y, et al. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree physiology, 2020, 40 (8): 1029- 1042.
doi: 10.1093/treephys/tpaa046 |
|
Chen Z, Wang L, Dai Y, et al. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation (or herbivory). Scientific Reports, 2017, 7 (1): 10125.
doi: 10.1038/s41598-017-09757-2 |
|
Choat B, Cobb A R, Jansen S. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist, 2008, 177 (3): 608- 625.
doi: 10.1111/j.1469-8137.2007.02317.x |
|
Dai Y X, Wang L, Wan X C. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought. AoB PLANTS, 2018, 10 (1): plx069. | |
De Schepper V, De Swaef T, Bauweraerts I, et al. Phloem transport: a review of mechanisms and controls. Journal of experimental botany, 2013, 64 (16): 4839- 4850.
doi: 10.1093/jxb/ert302 |
|
Furze M E, Trumbore S, Hartmann H. Detours on the phloem sugar highway: stem carbon storage and remobilization. Current Opinion in Plant Biology, 2018, 43, 89- 95.
doi: 10.1016/j.pbi.2018.02.005 |
|
Gururani M A, Mohanta T K, Bae H. Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International journal of molecular sciences, 2015, 16 (8): 19055- 19085.
doi: 10.3390/ijms160819055 |
|
Hartmann H, Bahn M, Carbone M, et al. Plant carbon allocation in a changing world—challenges and progress: introduction to a virtual issue on carbon allocation. New Phytologist, 2020, 227 (4): 981- 988. | |
Hu Y T, Xiang W H, Schäfer K V R, et al. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of the Total Environment, 2022, 828, 154517. | |
Levionnois S, Ziegler C, Jansen S, et al. Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytologist, 2020, 228 (2): 512- 524. | |
Lens F, Sperry J S, Christman M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New phytologist, 2011, 190 (3): 709- 723. | |
Li Z M, Wang C K, Luo D D, et al. Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species. Plant Physiology and Biochemistry, 2023, 197, 107658. | |
Liu Q, Liu Y, Gao L Q, et al. Vessel, intervessel pits and vessel-to-fiber pits have significant impact on hydraulic function under different drought conditions and re-irrigation. Environmental and Experimental Botany, 2023, 214, 105476. | |
Limousin J M, Roussel A, Rodríguez‐Calcerrada J, et al. 2022. Drought acclimation of Quercus ilex leaves improves tolerance to moderate drought but not resistance to severe water stress. Plant, Cell & Environment, 45(7): 1967−1984. | |
Martínez-Vilalta J, Vanderklein D, Mencuccini M. Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L. ). Oecologia, 2007, 150 (4): 529- 544. | |
McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New phytologist, 2008, 178 (4): 719- 739.
doi: 10.1111/j.1469-8137.2008.02436.x |
|
Nardini A, Luglio J. Leaf hydraulic capacity and drought vulnerability: possible trade‐offs and correlations with climate across three major biomes. Functional Ecology, 2014, 28 (4): 810- 818.
doi: 10.1111/1365-2435.12246 |
|
Pereira L, Domingues-Junior A P, Jansen S, et al. Is embolism resistance in plant xylem associated with quantity and characteristics of lignin?. Trees, 2018, 32 (2): 349- 358.
doi: 10.1007/s00468-017-1574-y |
|
Pérez‐Donoso A G, Greve L C, Walton J H, et al. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiology, 2007, 143 (2): 1024- 1036.
doi: 10.1104/pp.106.087023 |
|
Pérez‐Donoso A G, Lenhof J J, Pinney K, et al. Vessel embolism and tyloses in early stages of Pierce's disease. Australian Journal of Grape and Wine Research, 2016, 22 (1): 81- 86.
doi: 10.1111/ajgw.12178 |
|
Prats K A, Fanton A C, Brodersen C R, et al. Starch depletion in the xylem and phloem ray parenchyma of grapevine stems under drought. AoB PLANTS, 2023, 15 (5): plad062.
doi: 10.1093/aobpla/plad062 |
|
Reynolds A G, Niu L X, De Savigny C. Use of electrical conductivity to assess irrigation impacts on grapevine winter hardiness. International journal of fruit science, 2014, 14 (3): 267- 283.
doi: 10.1080/15538362.2014.898970 |
|
Sala A N, Piper F, Hoch G. Physiological mechanisms of droughtinduced tree mortality are far from being resolved. New Phytologist, 2010, 186 (2): 274- 281.
doi: 10.1111/j.1469-8137.2009.03167.x |
|
Savi T, Bertuzzi S, Branca S, et al. Drought‐induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?. New Phytologist, 2015, 205 (3): 1106- 1116.
doi: 10.1111/nph.13112 |
|
Serra-Maluquer X, Gazol A, Anderegg W R L, et al. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Global Change Biology, 2022, 28 (12): 3871- 3882.
doi: 10.1111/gcb.16123 |
|
Subasinghe Achchige Y M, Volkova L, Drinnan A, et al. A quantitative test for heat-induced cell necrosis in vascular cambium and secondary phloem of Eucalyptus obliqua stems. Journal of Plant Ecology, 2021, 14 (1): 160- 169.
doi: 10.1093/jpe/rtaa081 |
|
Surano A, Abou Kubaa R, Nigro F, et al. Susceptible and resistant olive cultivars show differential physiological response to Xylella fastidiosa infections. Frontiers in Plant Science, 2022, 13, 968934.
doi: 10.3389/fpls.2022.968934 |
|
Sun Q, Sun Y L, Walker M A, et al. Vascular occlusions in grapevines with Pierce's disease make disease symptom development worse. Plant Physiology, 2013, 161 (3): 1529- 1541. | |
Trugman A T, Anderegg L D L, Anderegg W R L, et al. Why is tree drought mortality so hard to predict?. Trends in Ecology & Evolution, 2021, 36 (6): 520- 532. | |
Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap. Berlin, Heidelberg: Springer Berlin Heidelberg. | |
Vuerich M, Petrussa E, Boscutti F, et al. Contrasting responses of two grapevine cultivars to drought: the role of non-structural carbohydrates in xylem hydraulic recovery. Plant and Cell Physiology, 2023, 64 (8): 920- 932.
doi: 10.1093/pcp/pcad066 |
|
Wang A Y, Han S J, Zhang J H, et al. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree physiology, 2018, 38 (12): 1792- 1804.
doi: 10.1093/treephys/tpy119 |
|
Wang L, Li J P, Wang Y, et al. Interactive effect between tree ageing and trunk-boring pest reduces hydraulics and carbon metabolism in Hippophae rhamnoides. AoB PLANTS, 2022, 14 (6): plac051.
doi: 10.1093/aobpla/plac051 |
|
Wortemann R, Herbette S, Barigah T S, et al. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiology, 2011, 31 (11): 1175- 1182.
doi: 10.1093/treephys/tpr101 |
|
Xu H Y, Wang H, Prentice I C, et al. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 2021, 232 (3): 1286- 1296.
doi: 10.1111/nph.17656 |
|
Ziaco E, Liu X S, Biondi F. Dendroanatomy of xylem hydraulics in two pine species: Efficiency prevails on safety for basal area growth in drought-prone conditions. Dendrochronologia, 2023, 81, 126116.
doi: 10.1016/j.dendro.2023.126116 |
|
Zhang F P, Zhang J L, Brodribb T J, et al. Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora. Plant Diversity, 2021, 43 (4): 324- 330.
doi: 10.1016/j.pld.2020.11.007 |
|
Zhu S D, Liu H, Xu Q Y, et al. Are leaves more vulnerable to cavitation than branches?. Functional Ecology, 2016, 30 (11): 1740- 1744.
doi: 10.1111/1365-2435.12656 |
[1] | 王舒扬,田力,周顺陶,储月娥,梅迪,袁佳秋,余延浩,洑香香. 多倍化对青钱柳叶形态、光合性能和次生代谢产物积累的影响[J]. 林业科学, 2024, 60(8): 120-131. |
[2] | 刘元玺,王丽娜,吴俊文,李世民. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 2024, 60(6): 71-85. |
[3] | 赖海荣,郭素娟. 不同板栗品种坚果果皮结构差异及其与腐烂指数的相关性分析[J]. 林业科学, 2024, 60(12): 72-82. |
[4] | 王薇,赵涵,黄欣,侯卓梁,姜在民,蔡靖. 白杨无性系叶片水力及经济性状与生物量的关系[J]. 林业科学, 2023, 59(10): 89-98. |
[5] | 谷瑞,徐森,陈双林,郭子武,杨丽婷. 美丽箬竹鞭段侧芽萌发生长的碳素制约作用[J]. 林业科学, 2022, 58(9): 70-78. |
[6] | 倪妍妍,简尊吉,徐瑾,曾立雄,阮宏华,雷蕾,肖文发,李迈和. 马尾松非结构性碳库大小及分配的纬向变化[J]. 林业科学, 2022, 58(8): 41-52. |
[7] | 吕庚鑫,孟益德,庆军,何凤,刘攀峰,杜庆鑫,杜红岩,杜兰英,王璐. ‘华仲6号’杜仲嫩枝扦插生根的解剖及生理变化[J]. 林业科学, 2022, 58(2): 113-124. |
[8] | 张文鑫,于少帅,田国忠,王合,任争光,王圣洁,孔德治,李永,林彩丽. 嫁接于3个枣园病砧的抗病接穗枣疯植原体检测及分子变异[J]. 林业科学, 2021, 57(11): 49-58. |
[9] | 徐军亮,竹磊,师志强,武靖,章异平. 栓皮栎粗根和茎干中非结构性碳水化合物含量的调配关系[J]. 林业科学, 2021, 57(1): 200-206. |
[10] | 陈晨,喻方圆. 林木花芽分化研究进展[J]. 林业科学, 2020, 56(9): 119-129. |
[11] | 刘洪凯,陈旭,张明忠,王强,王延平. 鲁中丘陵山地干旱生境上11个树种的细根解剖特征与耐旱策略[J]. 林业科学, 2020, 56(7): 185-193. |
[12] | 洪琮浩,洪震,雷小华,汪俊峰,闫道良. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响[J]. 林业科学, 2020, 56(6): 186-192. |
[13] | 王凯,宋琪,张日升,张大鹏,孙菊. 科尔沁沙地防护林主要树种的非结构性碳水化合物分布特征[J]. 林业科学, 2020, 56(12): 39-48. |
[14] | 陈奕帆,付晓莉,王辉民,戴晓琴,寇亮,陈伏生,卜文圣. 林下植被清除对不同径级中龄杉木生长速率的影响机制[J]. 林业科学, 2020, 56(11): 21-30. |
[15] | 杜常健, 孙佳成, 陈炜, 纪敬, 江泽平, 史胜青. 侧柏古树实生树和嫁接树的扦插生理和解剖特性比较[J]. 林业科学, 2019, 55(9): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||