林业科学 ›› 2025, Vol. 61 ›› Issue (5): 108-119.doi: 10.11707/j.1001-7488.LYKX20240047
收稿日期:
2024-01-23
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
郑春芳
E-mail:20195101@wzu.edu.cn
基金资助:
Yaxin Yin,Siyi Chen,Junjian Li,Qiaobo Shan,Chunfang Zheng*()
Received:
2024-01-23
Online:
2025-05-20
Published:
2025-05-24
Contact:
Chunfang Zheng
E-mail:20195101@wzu.edu.cn
摘要:
目的: 以红树植物秋茄为试材,探讨纳米氧化锌(ZnO NPs)提高红树林抗寒作用的机制,为生长在北缘红树林安全越冬或向更高纬度引种提供重要的技术支撑。方法: 采用叶面喷施方式,筛选秋茄幼苗适宜质量浓度的ZnO NPs;之后,幼苗进行连续3天早晚喷施适宜质量浓度ZnO NPs的预处理,在8 ℃(昼)/?3 ℃(夜)环境低温胁迫3 天,测定光合速率、抗氧化酶活性、褪黑素(MEL)合成途径等生理指标。结果: 随着ZnO NPs质量浓度增加,低温胁迫下秋茄幼苗净光合速率(Pn)和内源褪黑素质量分数均呈先升后降的趋势,其中,200 mg·L?1效果最佳。低温胁迫显著降低秋茄叶片内源MEL和一氧化氮(NO)含量,提高超氧阴离子(
中图分类号:
殷雅欣,陈思意,李军建,单巧博,郑春芳. 纳米氧化锌提高秋茄幼苗抗寒性的生理机制[J]. 林业科学, 2025, 61(5): 108-119.
Yaxin Yin,Siyi Chen,Junjian Li,Qiaobo Shan,Chunfang Zheng. Physiological Mechanisms of ZnO NPs in Enhancing Cold Resistance of Kandelia obovata Seedlings[J]. Scientia Silvae Sinicae, 2025, 61(5): 108-119.
图10
各单项指标间的主成分分析 Pn:净光合速率 Net photosynthetic rate;Trp:色氨酸 Tryptophan;Try:色胺 Tryptamine;5-HT:5-羟色胺 Serotonin;5-HTP:5-羟色氨酸 5-Hydroxytryptophan;N-ACE:N-乙酰基色胺 N-Acetyltryptamine;NAS:N-乙酰基-5-羟色胺 N-Acetyl-5-hydroxytryptamine;5-Meth:5-甲氧基色胺5-Methoxytryptamine;MEL:褪黑素 Melatonin;ASMT:N-乙酰基-5-羟色胺甲基转移酶 Acetylserotonin O-methyltransferase;TDC:色氨酸脱羧酶 Tryptophan decarboxylase;T5H:色胺-5-羟化酶Tryptamine 5-hydroxylase;SNAT:5-羟色胺-N-乙酰基转移酶 Serotonin N-acetyltransferase;H2O2:过氧化氢质量摩尔浓度 Hydrogen peroxide molality ;O2 - :超氧阴离子质量摩尔浓度 Superoxide anion radical molality ;SOD:超氧化物歧化酶活性 Superoxide dismutase activity;POD:过氧化物酶活性 Peroxidase activity;CAT:过氧化氢酶活性 Catalase activity;APX:抗坏血酸过氧化物酶 Ascorbate peroxidase;NO:一氧化氮 Nitric oxide;NR:硝酸还原酶 Nitrate reductase;NOS:一氧化氮合酶 Nitric oxide synthases"
图11
ZnO NPs提高低温胁迫下秋茄幼苗抗寒性的机制 Pn:净光合速率 Net photosynthetic rate;Gs:气孔导度 Stomatal conductance;Tr:蒸腾速率Transpiration rate;Ci:胞间CO2浓度Intercellular CO2 concentration;Trp:色氨酸 Tryptophan;Try:色胺 Tryptamine;5-HT:5-羟色胺 Serotonin;5-HTP:5-羟色氨酸 5-Hydroxytryptophan;N-ACE:N-乙酰基色胺 N-Acetyltryptamine;NAS:N-乙酰基-5-羟色胺 N-Acetyl-5-hydroxytryptamine;5-Meth:5-甲氧基色胺5-Methoxytryptamine;MEL:褪黑素 Melatonin;ASMT:N-乙酰基-5-羟色胺甲基转移酶 Acetylserotonin O-methyltransferase;TDC:色氨酸脱羧酶 Tryptophan decarboxylase;T5H:色胺-5-羟化酶Tryptamine 5-hydroxylase;SNAT:5-羟色胺-N-乙酰基转移酶 Serotonin N-acetyltransferase;H2O2:过氧化氢质量摩尔浓度 Hydrogen peroxide molality;${\mathrm{O}}_2^{\overline{\;\cdot\; }} $:超氧阴离子质量摩尔浓度 Superoxide anion radical molality;SOD:超氧化物歧化酶活性 Superoxide dismutase activity;POD:过氧化物酶活性 Peroxidase activity;CAT:过氧化氢酶活性 Catalase activity;APX:抗坏血酸过氧化物酶 Ascorbate peroxidase;NO:一氧化氮 Nitric oxide;NR:硝酸还原酶 Nitrate reductase;NOS:一氧化氮合酶 Nitric oxide synthases."
陈鹭真, 王文卿, 张宜辉, 等. 2008年南方低温对我国红树植物的破坏作用. 植物生态学报, 2010, 34 (2): 186- 194.
doi: 10.3773/j.issn.1005-264x.2010.02.010 |
|
Chen L Z, Wang W Q, Zhang Y H, et al. Damage to mangroves from extreme cold in early 2008 in southern China. Chinese Journal of Plant Ecology, 2010, 34 (2): 186- 194.
doi: 10.3773/j.issn.1005-264x.2010.02.010 |
|
李合生. 2000. 植物生理生化实验原理和技术. 北京: 高等教育出版社. | |
Li H S. 2000. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press. [in Chinese] | |
荣馨宇, 韩 蕊, 张殿光, 等. 纳米氧化锌颗粒对滨海湿地微生物群落的影响. 河海大学学报(自然科学版), 2023, 51 (1): 43- 51. | |
Rong X Y, Han R, Zhang D G, et al. Effect of ZnO nano particles on bacterial community in coastal wetlands. Journal of Hohai University (Natural Sciences), 2023, 51 (1): 43- 51. | |
王友绍. 全球气候变化对红树林生态系统的影响、挑战与机遇. 热带海洋学报, 2021, 40 (3): 1- 14.
doi: 10.11978/YG2020006 |
|
Wang Y S. Impacts, challenges and opportunities of global climate change on mangrove ecosystems. Journal of Tropical Oceanography, 2021, 40 (3): 1- 14.
doi: 10.11978/YG2020006 |
|
张慧玉, 岳丹斐, 潘晓娇, 等. 5-羟色胺在红树植物秋茄幼苗抗寒中的作用. 应用生态学报, 2023, 34 (5): 1263- 1271. | |
Zhang H Y, Yue D F, Pan X J, et al. Effects of 5-HT on the cold resistance of mangrove Kandelia obovata seedlings. The Journal of Applied Ecology, 2023, 34 (5): 1263- 1271. | |
郑春芳, 刘伟成, 魏 龙, 等. 外施褪黑素对低温胁迫下红树植物秋茄光合作用和抗坏血酸-谷胱甘肽循环的调控. 植物生理学报, 2019, 55 (8): 1211- 1221. | |
Zheng C F, Liu W C, Wei L, et al. Melatonin regulates photosynthesis and ascorbate-glutathione cycle in a mangrove Kandelia obovata under low temperature stress. Plant Physiology Journal, 2019, 55 (8): 1211- 1221. | |
Ahmad S, Mfarrej M F B, El-Esawi M A, et al. Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicology and Environmental Safety, 2022, 230, 113142.
doi: 10.1016/j.ecoenv.2021.113142 |
|
Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants: a review. Journal of Pineal Research, 2015, 59 (2): 133- 150.
doi: 10.1111/jpi.12253 |
|
Arnao M B, Hernández-Ruiz J. 2019. Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Science, 24(1): 38−48. | |
Awasthi G, Maheshwari T, Sharma R, et al. Actions and reactions of plants derived zinc-oxide nano-particles. Materials Today: Proceedings, 2023, 95, 77- 87. | |
Cheng C Z, Liu J P, Qu P Y, et al. Molecular and functional insights into MaTDC and MaASMT genes associated with melatonin biosynthesis and low temperature stress in banana. Scientia Horticulturae, 2023, 318, 112090.
doi: 10.1016/j.scienta.2023.112090 |
|
Faizan M, Bhat J A, Chen C, et al. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry, 2021a, 161, 122- 130.
doi: 10.1016/j.plaphy.2021.02.002 |
|
Faizan M, Bhat J A, Noureldeen A, et al. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Ecotoxicology and Environmental Safety, 2021b, 218, 112293.
doi: 10.1016/j.ecoenv.2021.112293 |
|
Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33, 317- 345.
doi: 10.1146/annurev.pp.33.060182.001533 |
|
He H Y, He L F. Crosstalk between melatonin and nitric oxide in plant development and stress responses. Physiologia Plantarum, 2020, 170 (2): 218- 226.
doi: 10.1111/ppl.13143 |
|
Kolenčík M, Ernst D, Urík M, et al. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials, 2020, 10 (8): 1619.
doi: 10.3390/nano10081619 |
|
Kowaltowski A J, de Souza-Pinto N C, Castilho R F, et al. Mitochondria and reactive oxygen species. Free Radical Biology and Medicine, 2009, 47 (4): 333- 343.
doi: 10.1016/j.freeradbiomed.2009.05.004 |
|
Kuppusamy A, Alagarswamy S, Karuppusami K M, et al. Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. Plants, 2023, 12 (13): 2535.
doi: 10.3390/plants12132535 |
|
Liu L R, Nian H, Lian T X. Plants and rhizospheric environment: affected by zinc oxide nanoparticles (ZnO NPs). A review. Plant Physiology and Biochemistry, 2022, 185, 91- 100.
doi: 10.1016/j.plaphy.2022.05.032 |
|
Liu T, Shi J L, Li M, et al. Trehalose triggers hydrogen peroxide and nitric oxide to participate in melon seedlings oxidative stress tolerance under cold stress. Environmental and Experimental Botany, 2021, 184, 104379.
doi: 10.1016/j.envexpbot.2021.104379 |
|
Mandal M, Sarkar M, Khan A, et al. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants–maintenance of structural individuality and functional blend. Advances in Redox Research, 2022, 5, 100039.
doi: 10.1016/j.arres.2022.100039 |
|
Moloi M J, van der Westhuizen A J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. Journal of Plant Physiology, 2006, 163 (11): 1118- 1125.
doi: 10.1016/j.jplph.2005.07.014 |
|
Peng Y L, Wang Y S, Fei J, et al. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress. Ecotoxicology, 2015, 24 (7): 1722- 1732. | |
Shankar S, Rhim J W. Effect of Zn salts and hydrolyzing agents on the morphology and antibacterial activity of zinc oxide nanoparticles. Environmental Chemistry Letters, 2019, 17 (2): 1105- 1109.
doi: 10.1007/s10311-018-00835-z |
|
Sierla M, Rahikainen M, Salojärvi J, et al. Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxidants & Redox Signaling, 2013, 18 (16): 2220- 2239. | |
Song Y, Jiang M, Zhang H L, et al. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L. ) by regulating antioxidative system and chilling response transcription factors. Molecules, 2021, 26 (8): 2196.
doi: 10.3390/molecules26082196 |
|
Sui N, Li M, Liu X Y, et al. Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica, 2007, 45 (3): 447- 454.
doi: 10.1007/s11099-007-0074-5 |
|
Sun L Y, Song F B, Guo J H, et al. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. International Journal of Molecular Sciences, 2020, 21 (3): 782.
doi: 10.3390/ijms21030782 |
|
Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46 (1): 21- 27.
doi: 10.1007/s11099-008-0005-0 |
|
Wang W Q, You S Y, Wang Y B, et al. Influence of frost on nutrient resorption during leaf senescence in a mangrove at its latitudinal limit of distribution. Plant and Soil, 2011, 342 (1): 105- 115. | |
Wang X P, Yang X Y, Chen S Y, et al. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers in Plant Science, 2016, 6, 1243. | |
Xu J Y, Xin-Ming P U, Lu D C, et al. Seawater quality criteria and ecotoxicity risk assessment of zinc oxide nanoparticles based on data of resident marine organisms in China. Science of the Total Environment, 2023, 905, 166690.
doi: 10.1016/j.scitotenv.2023.166690 |
|
Zhang Y X, Fan Y P, Rui C, et al. Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2+ signal transduction. Frontiers in Plant Science, 2021, 12, 693690.
doi: 10.3389/fpls.2021.693690 |
|
Zheng C F, Ye Y, Liu W C, et al. Recovery of photosynthesis, sucrose metabolism, and proteolytic enzymes in Kandelia obovata from rare cold events in the northermmost magngrove, China. Ecological Processes, 2016a, 5, 9.
doi: 10.1186/s13717-016-0047-3 |
|
Zheng C F, Tang J W, Chen J N, et al. Mechanisms on inhibition of photosynthesis in Kandelia obovata due to extreme cold events under climate change. Ecological Processes, 2016b, 5, 20.
doi: 10.1186/s13717-016-0064-2 |
[1] | 陈汝婷,迟德富. 病虫害干扰对森林碳汇影响的研究进展[J]. 林业科学, 2025, 61(2): 1-11. |
[2] | 陆日,王晨,陈烨,许茜茜,胡玥,陈峥,曹镓玺,武曙红,李玲,高鹤. 红树林保护碳汇项目碳信用计量方法——以深圳市福田红树林保护区为例[J]. 林业科学, 2023, 59(3): 44-53. |
[3] | 邢军超,张一南,石焱,李金鑫,李敏,申宛娜,王黎,赵嘉平. 腐烂病菌、溃疡病菌侵染早期新疆杨叶片组织光合响应特征的比较[J]. 林业科学, 2021, 57(9): 121-129. |
[4] | 姚凯,吴沿友. 氟离子和碳酸氢根对构树幼苗生长和碳代谢的影响[J]. 林业科学, 2021, 57(6): 56-63. |
[5] | 赵秀婷,王延双,段劼,马履一,何宝华,贾忠奎,桑子阳,朱仲龙. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响[J]. 林业科学, 2021, 57(4): 43-53. |
[6] | 王晓,韦小丽,吴高殷,陈胜群. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173-181. |
[7] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. |
[8] | 王林,代永欣,张劲松,孟平,孙胜,李豪,万贤崇. 水分和光照条件对核桃-黄豆农林复合系统中黄豆光合作用和生长的影响[J]. 林业科学, 2020, 56(4): 188-196. |
[9] | 郭雯, 雷刚, 漆良华, 王一, 徐瑞晶, 张建. 海南岛簕竹属5个竹种雨季光合特性与叶片形态结构性状[J]. 林业科学, 2019, 55(8): 63-72. |
[10] | 肖遥, 易飞, 韩东花, 卢楠, 杨桂娟, 赵鲲, 王军辉, 麻文俊. 楸树种间和种内杂种生长与光合系统氮素利用及分配的差异分析[J]. 林业科学, 2019, 55(5): 55-64. |
[11] | 邱霓, 徐颂军, 邱彭华, 杨文槐, 杨秀, 杨倩. 珠海淇澳岛红树林群落分布与景观格局[J]. 林业科学, 2019, 55(1): 1-10. |
[12] | 刘成功, 王明援, 刘宁, 丁昌俊, 顾炳国, 陈存, 宁坤, 苏晓华, 黄秦军. 不同光照时间对欧美杨幼苗生长和光合特性的影响[J]. 林业科学, 2018, 54(12): 33-41. |
[13] | 郭文霞, 赵志江, 郑娇, 李俊清. 土壤水分和氮素的交互作用对油松幼苗光合和生长的影响[J]. 林业科学, 2017, 53(4): 37-48. |
[14] | 尹吴, 孙伟博, 周燕, 诸葛强. 毛果杨Rubisco活化酶基因的克隆与功能分析[J]. 林业科学, 2017, 53(4): 83-95. |
[15] | 梁永富, 王康才, 薛启, 隋利, 叶军, 陈兴忠. 生长调节剂对低温胁迫下酸橙幼苗抗逆生理指标的影响[J]. 林业科学, 2017, 53(3): 68-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||