林业科学 ›› 2025, Vol. 61 ›› Issue (5): 131-145.doi: 10.11707/j.1001-7488.LYKX20240636
张静1,2,张伟溪1,2,丁昌俊1,2,*(),褚延广1,2,苏晓华1,2,5,赵军3,苏雪辉4,苑正赛1,2,李政宏1,2,余金金1,2,黄秦军1,2
收稿日期:
2024-10-29
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
丁昌俊
E-mail:changjunding@caf.ac.cn
基金资助:
Jing Zhang1,2,Weixi Zhang1,2,Changjun Ding1,2,*(),Yanguang Chu1,2,Xiaohua Su1,2,5,Jun Zhao3,Xuehui Su4,Zhengsai Yuan1,2,Zhenghong Li1,2,Jinjin Yu1,2,Qinjun Huang1,2
Received:
2024-10-29
Online:
2025-05-20
Published:
2025-05-24
Contact:
Changjun Ding
E-mail:changjunding@caf.ac.cn
摘要:
目的: 研究美洲黑杨亲本及其不同生长势F1子代在不同林龄年生长关键时期的叶片淀粉、蔗糖代谢关键指标差异,解析淀粉、蔗糖代谢在美洲黑杨生长优势形成和维持中的作用关系,为揭示淀粉和蔗糖代谢过程对林木生长杂种优势形成和维持作用以及杨树高产杂交育种提供参考。方法: 采用空间替代时间方法,以1年和3年林龄的美洲黑杨高生长势子代(H1、H2、H3)、低生长势子代(L3、L4)及其父(MP)、母(FP)本为研究对象,采用微量法测定其年生长关键时期(7、8、9月)不同时间点叶片淀粉、蔗糖含量及ADP-葡聚糖焦磷酸化酶(AGPase)、蔗糖磷酸合酶(SPS)、β-淀粉酶(BAM)和蔗糖合成酶(分解方向,SS-I)活性,通过亲子代间的各指标差异比较以及相关性、回归和通径分析,分析淀粉、蔗糖代谢关键指标对不同生长势形成的作用规律。结果: 1年生和3年生林龄高生长势子代在年生长关键期的树高、胸径等生长指标均表现出明显的超亲优势,且淀粉、蔗糖代谢关键指标的中亲或超亲优势明显。但不同林龄美洲黑杨高生长势子代促进和维持生长优势的糖代谢特征不同。其中,1年生高生长势子代表现出超亲优势的白日淀粉和蔗糖合成相关酶(AGPase和SPS)活性以及淀粉夜间消耗量,HPH分别为1.63%~13.47%,5.41%~16.03%,0.58%~4.44%,且AGPase和SPS与树高和地径生长净增量显著正相关,且正直接效应显著(P<0.05);3年生高生长势子代除日间SPS活性和蔗糖夜间消耗量为超亲优势(HPH: 0.61%~14.77%,0.29%~26.05%),其他糖代谢指标均表现为正中亲优势(MPH),分别为0.42%~12.23%,0.25%~12.20%,0.76%~5.20%,糖代谢关键指标与3年生美洲黑杨生长性状间的相关性受月份变化影响,蔗糖夜间消耗量、BAM和SPS以及AGPase活性分别在7、8、9月对净生长具有决定作用。上述指标在低生长势子代中表现出相反趋势。结论: 美洲黑杨生长性状杂种优势现象在1年生、3年生稳定存在,年生长关键期美洲黑杨糖代谢相关指标特征与其生长优势的形成和维持密切相关。不同林龄美洲黑杨高生长势子代维持生长优势的糖代谢策略不同,1年生主要通过提高昼夜蔗糖和淀粉积累及运输促进生长优势形成;3年生美洲黑杨高生长势子代主要通过蔗糖积累及运输维持生长优势,且该过程受月份因素影响。
中图分类号:
张静,张伟溪,丁昌俊,褚延广,苏晓华,赵军,苏雪辉,苑正赛,李政宏,余金金,黄秦军. 美洲黑杨亲本及其不同林龄及生长势子代叶片糖代谢的差异[J]. 林业科学, 2025, 61(5): 131-145.
Jing Zhang,Weixi Zhang,Changjun Ding,Yanguang Chu,Xiaohua Su,Jun Zhao,Xuehui Su,Zhengsai Yuan,Zhenghong Li,Jinjin Yu,Qinjun Huang. Differences in Leaf Sugar Metabolism of Populus deltoides Parents and their Hybrids with Different Growth Potentials and Different Forest Ages[J]. Scientia Silvae Sinicae, 2025, 61(5): 131-145.
表1
1年生和3年生美洲黑杨子代无性系生长关键期树高、树径净增量的杂种优势与差异分析①"
指标 Indicators | 杂种优势 Heterosis (%) | 1年生 1-year-old | 3年生 3-year-old | |||||||||
H1 | H2 | H3 | L3 | L4 | H1 | H2 | H3 | L3 | L4 | |||
高度净增量 Net increase in height | MPH | 6.33** | 26.81** | 8.53** | –44.45 | –20.36 | 22.43** | 7.12* | 18.73** | –18.73 | –15.04 | |
HPH | 5.54** | 25.88** | 7.73** | –44.86 | –20.95 | 20.21** | 5.18* | 16.58** | –20.21 | –16.58 | ||
径粗净增量 Net increase in diameter | MPH | 24.78** | 38.55** | 14.97** | –50.74 | –17.24 | 51.32** | 17.46** | 14.29** | –35.45 | –33.33 | |
HPH | 14.98** | 27.67** | 5.94** | –54.61 | –23.74 | 50.53** | 16.84** | 13.68** | –35.79 | –33.68 |
表2
美洲黑杨子代淀粉和蔗糖夜间消耗量的杂种优势与差异分析①"
指标Indicators | 系号 Clone | 1年生 1-year-old | 3年生 3-year-old | |||||||||||
7月July | 8月August | 9月September | 7月July | 8月August | 9月September | |||||||||
MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | |||
淀粉夜间消耗量 Starch consumption at night | H1 | –2.85 | –5.75 | 0.30 | –0.35 | 6.50* | 4.44* | 9.59 | 2.91 | 1.99 | 0.44 | 12.20* | 8.99* | |
H2 | 1.18 | –1.84 | 4.33 | 3.65 | 4.61 | 2.58 | 2.68 | –3.58 | –2.18 | –3.68 | 0.25 | –2.62 | ||
H3 | 0.83 | –2.18 | 1.24 | 0.58 | –4.70 | –6.54 | 0.30 | –5.82 | 4.52 | 2.93 | 3.85 | 0.87 | ||
L3 | 7.54 | 4.32 | –1.39 | –2.03 | –16.81 | –18.42 | 1.61 | –4.60 | –4.33 | –5.79 | –13.00 | –15.49 | ||
L4 | –0.29 | –2.71 | 1.12 | 0.46 | –6.25 | –8.07 | 14.36 | 7.39 | –0.66 | –2.18 | –2.69 | –5.48 | ||
蔗糖夜间消耗量 Sucrose consumption at night | H1 | 9.45 | 5.95 | 11.31 | 3.34 | 3.79 | –5.21 | 15.86 | 15.19 | 18.18* | 2.61* | 31.63** | 26.05** | |
H2 | 0.77 | –2.45 | –4.82 | –11.64 | 6.72 | –2.53 | 0.88 | 0.29 | 4.17 | –9.56 | 13.55* | 8.73* | ||
H3 | 15.77* | 12.07* | 6.36 | –1.25 | 15.96 | 5.91 | –0.73 | –1.31 | 12.99* | –1.90* | 12.05* | 7.29* | ||
L3 | 1.18 | –2.05 | 2.23 | –5.09 | 8.24 | –1.14 | –0.88 | –1.45 | 13.62* | –1.35* | –19.53 | –22.94 | ||
L4 | –3.24 | –6.33 | 9.57 | 1.73 | 0.71 | –8.02 | 2.35 | 1.76 | –16.15 | –27.20 | 11.04* | 6.34* |
表3
美洲黑杨子代ADP-葡聚糖焦磷酸化酶和蔗糖磷酸合成酶活性的杂种优势与差异分析①"
指标 Indicators | 系号 Clone | 1年生 1-year-old | 3年生 3-year-old | |||||||||||
7月July | 8月August | 9月September | 7月July | 8月August | 9月September | |||||||||
MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | |||
AGPase活性 AGPase activity | H1 | 7.29** | 5.94** | 8.41** | 5.99** | –0.14* | –4.30* | 1.23 | –4.96 | –1.44 | –2.19 | 7.05* | –0.37* | |
H2 | 2.92** | 1.63* | –5.34 | –7.46 | 18.40** | 13.47** | 2.77 | –3.52 | 9.33* | 8.50* | 0.42 | –6.55 | ||
H3 | 0.22* | –1.04* | 9.32** | 6.88** | 12.07** | 7.40** | 1.60 | –4.61 | 12.23** | 11.39** | 8.79** | 1.25** | ||
L3 | –21.17 | –22.16 | –25.99 | –27.65 | –20.60 | –23.90 | –1.51 | –7.54 | –6.52 | –7.22 | –4.06 | –10.72 | ||
L4 | –10.82 | –11.94 | 6.40** | 4.02** | –11.58 | –15.27 | –11.67 | –17.07 | 1.42 | 0.66 | –5.59 | –12.14 | ||
SPS活性 SPS activity | H1 | –1.98 | –9.88 | 1.24 | –4.92 | 8.27* | –1.67* | 4.93 | 1.53 | 13.15 | 8.80 | 9.69** | –2.44** | |
H2 | 15.93* | 6.59* | 22.43** | 14.99** | 8.92* | –1.09* | 3.98 | 0.61 | 0.19 | –3.66 | 29.04** | 14.77** | ||
H3 | 15.36* | 6.07* | 12.23* | 5.41* | 27.77** | 16.03** | –0.49 | –3.72 | 11.39 | 7.12 | 4.73* | –6.86* | ||
L3 | –3.64 | –11.40 | –6.23 | –11.93 | 12.77** | 2.41** | –5.26 | –8.33 | 1.84 | –2.07 | –16.31 | –25.57 | ||
L4 | –6.85 | –14.36 | –3.96 | –9.80 | –12.05 | –20.13 | –3.54 | –6.67 | –1.17 | –4.96 | –3.66 | –14.31 |
表4
美洲黑杨子代β-淀粉酶BAM和蔗糖合成酶(分解方向)SS-I活性的杂种优势与差异分析①"
指标 Indicators | 系号 Clone | 1年生 1-year-old | 3年生 3-year-old | |||||||||||
7月 July | 8月August | 9月September | 7月 July | 8月August | 9月September | |||||||||
MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | |||
BAM活性 BAM activity | H1 | 0.54 | –0.69 | 1.74 | 0.03 | –0.39 | –0.89 | 3.82** | 1.77** | 5.11 | 2.45 | 3.30 | 0.18 | |
H2 | 1.18 | –0.06 | 3.11 | 1.39 | 1.11 | 0.60 | 0.87 | –1.12 | 2.91 | 0.31 | 5.20* | 2.02* | ||
H3 | 1.60 | 0.36 | 0.70 | –0.99 | 0.57 | 0.07 | 0.76 | –1.23 | 1.74 | –0.84 | 1.49 | –1.57 | ||
L3 | –0.39 | –1.60 | –2.24 | –3.88 | –0.76 | –1.25 | –0.18 | –2.15 | 0.78 | –1.77 | –4.30 | –7.20 | ||
L4 | –1.50 | –2.70 | 0.50 | –1.19 | 0.45 | –0.05 | –4.16 | –6.06 | –1.65 | –4.13 | 4.63* | 1.47* | ||
SS-I活性 SS-I activity | H1 | –4.09 | –16.30 | 0.11 | –4.34 | 1.16 | –5.50 | –3.79 | –5.89 | 1.10 | –4.06 | –2.32 | –3.11 | |
H2 | –7.88 | –19.61 | 5.64 | 0.95 | –9.34 | –15.30 | 5.63 | 3.33 | –4.41 | –9.29 | 5.07 | 4.23 | ||
H3 | 5.84 | –7.64 | 1.78 | –2.74 | –0.05 | –6.62 | –7.20 | –9.22 | –0.74 | –5.80 | –4.39 | –5.16 | ||
L3 | –1.17 | –13.75 | 17.01* | 11.81* | 8.40* | 1.27* | 0.92 | –1.28 | 6.30 | 0.87 | 6.02 | 5.17 | ||
L4 | 20.72* | 5.35* | 12.91 | 7.89 | 4.51 | –2.37 | 4.06 | 1.79 | 1.10 | –4.06 | –1.18 | –1.97 |
表5
美洲黑杨的淀粉、蔗糖代谢生化性状与生长性状间的生长回归方程分析①"
林龄 Forest age/a | 月份 Month | 生长性状 Growth traits | 生长回归方程 Growth regression equation | 复相关系数 Multiple correlation coefficient |
1 | 7 | ?H (y1) | y1 = –90.472–2.433x1+1.875x2+0.016x3+0.058x4+5.394x5–0.031x6 | 0.825** |
?GD (y2) | y2 = –8.641–0.405x1+0.101x2+0.002x3+0.003x4+0.560x5–0.002x6 | 0.879** | ||
8 | ?H (y1) | y1 = –127.231+2.666x1–6.375x2+0.021x3+0.050x4+6.854x5–0.053x6 | 0.890** | |
?GD (y2) | y2 = –6.761–0.007x1–0.349x2+0.001x3+0.004x4+0.761x5–0.017x6 | 0.908** | ||
9 | ?H (y1) | y1 = –6.023+3.387x1–1.588x2+0.011x3–0.001x4+0.427x5–0.027x6 | 0.803* | |
?GD (y2) | y2 = –11.805+0.405x1+0.256x2+0.001x3–0.002x4+0.473x5+0.001x6 | 0.816** | ||
3 | 7 | ?H (y1) | y1 = –120.290–2.816x1+6.465x2+0.004x3+0.027x4+8.467x5+0.034x6 | 0.601 |
?DBH (y2) | y2 = –211.948–3.728x1+9.304x2+0.004x3+0.076x4+10.373x5+0.076x6 | 0.736 | ||
8 | ?H (y1) | y1 = –98.469+3.756x1+2.667x2+0.013x3+0.128x4+0.497x5–0.021x6 | 0.723 | |
?DBH (y2) | y2 = –110.832+1.054x1+1.226x2+0.001x3+0.040x4+6.553x5–0.022x6 | 0.610 | ||
9 | ?H (y1) | y1 = –69.175+2.564x1+2.731x2+0.022x3+0.036x4+0.361x5–0.042x6 | 0.792* | |
?DBH (y2) | y2 = –141.008+2.970x1+3.064x2+0.013x3+0.027x4+1.294x5+0.056x6 | 0.797* |
表6
美洲黑杨生化指标与单月高生长净增量的通径分析①"
林龄 Forest age/a | 月份 Month | 因子 Factor | 与?H简单相关 Simple relevant with net monthly growth in tree height | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficients | 决策系数 Decision coefficient | |||||
?Starch | ?Sucrose | AGPase | SPS | BAM | SS-I | ||||||
1 | 7 | ?Starch | –0.159 | –0.125 | 1 | 0.017 | –0.015 | –0.014 | 0.021 | –0.010 | 0.024 |
?Sucrose | 0.169 | 0.151 | 0.020 | 1 | 0.028 | –0.022 | 0.016 | –0.019 | 0.028 | ||
AGPase | 0.607** | 0.369 | –0.045 | 0.068 | 1 | 0.113 | 0.025 | –0.056 | 0.312 | ||
SPS | 0.619** | 0.515 | –0.058 | –0.075 | 0.157 | 1 | 0.005 | 0.007 | 0.372 | ||
BAM | 0.256 | 0.209 | 0.035 | 0.022 | 0.014 | 0.002 | 1 | –0.030 | 0.063 | ||
SS-I | –0.248 | –0.159 | –0.012 | –0.020 | –0.024 | 0.002 | –0.023 | 1 | 0.054 | ||
8 | ?Starch | 0.156 | 0.105 | 1 | –0.008 | –0.003 | 0.013 | –0.017 | –0.008 | 0.022 | |
?Sucrose | –0.112 | –0.252 | –0.019 | 1 | 0.068 | –0.052 | 0.057 | –0.032 | –0.007 | ||
AGPase | 0.632** | 0.569 | –0.014 | 0.153 | 1 | 0.034 | 0.175 | –0.086 | 0.395 | ||
SPS | 0.579** | 0.404 | 0.048 | –0.084 | 0.024 | 1 | 0.104 | 0.005 | 0.305 | ||
BAM | 0.472* | 0.239 | –0.038 | 0.054 | 0.073 | 0.061 | 1 | –0.034 | 0.168 | ||
SS-I | –0.415* | –0.099 | –0.035 | –0.024 | –0.037 | –0.015 | –0.028 | 1 | 0.072 | ||
9 | ?Starch | 0.541** | 0.239 | 1 | 0.003 | 0.107 | 0.014 | –0.023 | –0.052 | 0.201 | |
?Sucrose | –0.024 | –0.125 | 0.002 | 1 | 0.010 | 0.069 | –0.019 | –0.035 | –0.010 | ||
AGPase | 0.735** | 0.580 | 0.260 | 0.047 | 1 | 0.160 | 0.065 | –0.156 | 0.516 | ||
SPS | 0.099 | –0.012 | 0.001 | 0.007 | 0.003 | 1 | 0.000 | 0.000 | –0.003 | ||
BAM | 0.109 | 0.020 | –0.002 | –0.003 | 0.002 | –0.000 | 1 | –0.003 | 0.004 | ||
SS-I | –0.392* | –0.218 | –0.047 | –0.062 | –0.059 | –0.006 | –0.027 | 1 | 0.123 | ||
3 | 7 | ?Starch | –0.008 | –0.154 | 1 | 0.046 | 0.009 | 0.009 | –0.016 | 0.029 | –0.021 |
?Sucrose | 0.360 | 0.449 | 0.133 | 1 | –0.154 | –0.180 | 0.150 | –0.154 | 0.122 | ||
AGPase | 0.170 | 0.110 | 0.007 | –0.038 | 1 | 0.055 | 0.040 | –0.007 | 0.025 | ||
SPS | 0.025 | 0.175 | 0.010 | –0.070 | 0.088 | 1 | –0.021 | 0.028 | –0.022 | ||
BAM | 0.500* | 0.408 | –0.043 | 0.136 | 0.150 | –0.050 | 1 | –0.183 | 0.242 | ||
SS-I | –0.141 | 0.205 | 0.039 | –0.070 | –0.014 | 0.032 | –0.092 | 1 | –0.100 | ||
8 | ?Starch | 0.165 | 0.211 | 1 | –0.013 | 0.064 | –0.047 | 0.060 | 0.042 | 0.025 | |
?Sucrose | 0.314 | 0.200 | –0.012 | 1 | –0.010 | 0.051 | 0.102 | 0.042 | 0.086 | ||
AGPase | 0.389* | 0.290 | 0.088 | –0.014 | 1 | 0.017 | 0.060 | –0.040 | 0.142 | ||
SPS | 0.563** | 0.544 | –0.121 | 0.138 | 0.032 | 1 | –0.085 | –0.034 | 0.317 | ||
BAM | 0.159 | 0.028 | 0.008 | 0.014 | 0.006 | –0.004 | 1 | 0.003 | 0.008 | ||
SS-I | –0.037 | –0.050 | 0.010 | 0.011 | –0.007 | –0.003 | 0.005 | 1 | 0.001 | ||
9 | ?Starch | 0.418* | 0.135 | 1 | 0.055 | 0.040 | 0.024 | 0.017 | –0.016 | 0.095 | |
?Sucrose | 0.514** | 0.158 | 0.065 | 1 | 0.034 | 0.079 | 0.038 | –0.065 | 0.137 | ||
AGPase | 0.655** | 0.515 | 0.152 | 0.115 | 1 | 0.005 | 0.115 | –0.217 | 0.409 | ||
SPS | 0.360 | 0.249 | 0.045 | 0.124 | 0.003 | 1 | 0.093 | 0.013 | 0.117 | ||
BAM | 0.282 | 0.026 | 0.003 | 0.006 | 0.006 | 0.010 | 1 | 0.001 | 0.014 | ||
SS-I | –0.421* | –0.135 | –0.019 | –0.055 | –0.057 | 0.007 | 0.006 | 1 | 0.095 |
表7
美洲黑杨生化指标与单月径生长净增量的通径分析①"
林龄 Forest age/a | 月份 Month | 因子 Factor | 与?GD或?DBH简单相关 Simple relevant with net monthly growth in ground diameter or DBH | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficients | 决策系数 Decision coefficient | |||||
?Starch | ?Sucrose | AGPase | SPS | BAM | SS-I | ||||||
1 | 7 | ?Starch | –0.273 | –0.233 | 1 | 0.031 | –0.028 | –0.026 | 0.039 | –0.018 | 0.073 |
?Sucrose | 0.177 | 0.092 | 0.012 | 1 | 0.017 | –0.013 | 0.010 | –0.012 | 0.024 | ||
AGPase | 0.772** | 0.610 | –0.074 | 0.112 | 1 | 0.186 | 0.042 | –0.093 | 0.570 | ||
SPS | 0.461* | 0.261 | –0.029 | –0.038 | 0.080 | 1 | 0.002 | 0.003 | 0.173 | ||
BAM | 0.277 | 0.244 | 0.041 | 0.025 | 0.017 | 0.002 | 1 | –0.035 | 0.076 | ||
SS-I | –0.250 | –0.131 | –0.010 | –0.017 | –0.020 | 0.002 | –0.019 | 1 | 0.048 | ||
8 | ?Starch | 0.148 | –0.004 | 1 | –0.001 | 0.000 | 0.001 | –0.001 | –0.001 | –0.001 | |
?Sucrose | –0.026 | –0.184 | –0.014 | 1 | 0.050 | –0.038 | 0.042 | –0.045 | –0.024 | ||
AGPase | 0.452* | 0.210 | –0.005 | 0.057 | 1 | 0.013 | 0.064 | –0.078 | 0.146 | ||
SPS | 0.607** | 0.403 | 0.048 | –0.084 | 0.024 | 1 | 0.104 | –0.060 | 0.327 | ||
BAM | 0.605** | 0.353 | –0.056 | 0.081 | 0.108 | 0.091 | 1 | –0.103 | 0.303 | ||
SS-I | –0.624** | –0.429 | –0.151 | –0.104 | –0.159 | –0.064 | –0.125 | 1 | 0.351 | ||
9 | ?Starch | 0.516** | 0.259 | 1 | 0.004 | 0.116 | 0.015 | –0.025 | –0.056 | 0.200 | |
?Sucrose | 0.093 | 0.183 | 0.003 | 1 | 0.015 | 0.100 | –0.027 | –0.052 | 0.001 | ||
AGPase | 0.758** | 0.674 | 0.302 | 0.054 | 1 | 0.185 | 0.076 | –0.182 | 0.568 | ||
SPS | 0.122 | –0.173 | 0.010 | 0.095 | 0.048 | 1 | –0.003 | –0.005 | –0.072 | ||
BAM | 0.218 | 0.202 | –0.019 | –0.030 | 0.023 | –0.004 | 1 | –0.025 | 0.047 | ||
SS-I | –0.227 | 0.083 | –0.018 | –0.023 | –0.022 | –0.002 | –0.010 | 1 | –0.045 | ||
3 | 7 | ?Starch | 0.014 | –0.181 | 1 | 0.054 | 0.011 | 0.010 | –0.019 | 0.035 | –0.038 |
?Sucrose | 0.387* | 0.572 | 0.170 | 1 | –0.197 | –0.229 | 0.191 | –0.197 | 0.116 | ||
AGPase | 0.252 | 0.093 | 0.006 | –0.032 | 1 | 0.047 | 0.034 | –0.006 | 0.038 | ||
SPS | 0.220 | 0.433 | 0.024 | –0.173 | 0.218 | 1 | –0.053 | 0.068 | 0.003 | ||
BAM | 0.537** | 0.442 | –0.046 | 0.147 | 0.162 | –0.054 | 1 | –0.198 | 0.279 | ||
SS-I | –0.153 | 0.214 | 0.041 | –0.074 | –0.014 | 0.034 | –0.096 | 1 | –0.111 | ||
8 | ?Starch | 0.155 | 0.079 | 1 | –0.005 | 0.024 | –0.018 | 0.022 | –0.016 | 0.018 | |
?Sucrose | 0.412* | 0.122 | –0.007 | 1 | –0.006 | 0.031 | 0.062 | 0.026 | 0.086 | ||
AGPase | 0.167 | 0.025 | 0.008 | –0.001 | 1 | 0.001 | 0.005 | –0.003 | 0.008 | ||
SPS | 0.169 | 0.228 | –0.051 | 0.058 | 0.014 | 1 | –0.036 | –0.014 | 0.025 | ||
BAM | 0.541** | 0.495 | 0.140 | 0.253 | 0.102 | –0.078 | 1 | 0.053 | 0.291 | ||
SS-I | 0.007 | –0.069 | 0.014 | –0.015 | –0.010 | –0.004 | 0.007 | 1 | –0.006 | ||
9 | ?Starch | 0.336 | 0.011 | 1 | 0.005 | 0.003 | 0.002 | 0.001 | –0.002 | 0.007 | |
?Sucrose | 0.521** | 0.381 | 0.156 | 1 | 0.085 | 0.190 | 0.092 | –0.157 | 0.252 | ||
AGPase | 0.499* | 0.526 | 0.155 | 0.118 | 1 | 0.005 | 0.118 | –0.221 | 0.248 | ||
SPS | 0.516** | 0.309 | 0.055 | 0.154 | 0.003 | 1 | 0.115 | 0.016 | 0.223 | ||
BAM | 0.427* | 0.103 | 0.013 | 0.025 | 0.023 | 0.038 | 1 | 0.005 | 0.077 | ||
SS-I | –0.025 | 0.267 | –0.037 | –0.110 | –0.112 | 0.014 | 0.012 | 1 | –0.085 |
丁昌俊, 张伟溪, 高 暝, 等. 不同生长势美洲黑杨转录组差异分析. 林业科学, 2016, 52 (3): 47- 58. | |
Ding C J, Zhang W X, Gao M, et al. Analysis of transcriptome differences among Populus deltoides with different growth potentials. Scientia Silvae Sinicae, 2016, 52 (3): 47- 58. | |
冯雅岚, 尹 飞, 徐 柯, 等. 2021. 蔗糖代谢及信号转导在植物发育和逆境响应中的作用. 核农学报, 35(9): 2044–2055. | |
Feng Y L, Yin F, Xu K, et al. 2021. Role of sucrose metabolism and signal transduction in plant development and stress response. Journal of Nuclear Agricultural Sciences, 35(9): 2044–2055. [in Chinese] | |
高 暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种 F1无性系光合特性的研究. 林业科学研究, 2014, 27 (6): 721- 728. | |
Gao M, Ding C J, Su X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones. Forest Research, 2014, 27 (6): 721- 728. | |
黄国伟, 苏晓华, 黄秦军. 美洲黑杨不同生长势无性系生长和生理特征的差异. 林业科学, 2012, 48 (4): 27- 34.
doi: 10.11707/j.1001-7488.20120405 |
|
Huang G W, Su X H, Huang Q J. Differences in growth and physiological characteristics in different growth vigor clones of Populus deltoides. Scientia Silvae Sinicae, 2012, 48 (4): 27- 34.
doi: 10.11707/j.1001-7488.20120405 |
|
李 洁, 姚宝花, 宋宇琴, 等. 枣不同品种和果实不同部位糖积累及相关酶活性. 林业科学, 2017, 53 (12): 30- 40.
doi: 10.11707/j.1001-7488.20171204 |
|
Li J, Yao B H, Song Y Q, et al. Sugar accumulation and the relevant enzymes activities in different parts of fruit of three jujube cultivars. Scientia Silvae Sinicae, 2017, 53 (12): 30- 40.
doi: 10.11707/j.1001-7488.20171204 |
|
栗青丽, 王灵杰, 高培军, 等. 竹茎秆快速生长期淀粉分解相关酶基因表达的分析. 浙江农林大学学报, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661 |
|
Li Q L, Wang L J, Gao P J, et al. Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. Journal of Zhejiang A& F University, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661 |
|
刘有春, 陶承光, 魏永祥, 等. 越橘果实糖酸含量和不同发育阶段的变化及其与叶片中可溶性糖含量的相关关系. 中国农业科学, 2013, 46 (19): 4110- 4118.
doi: 10.3864/j.issn.0578-1752.2013.19.017 |
|
Liu Y C, Tao C G, Wei Y X, et al. Fruit sugar and acid content, variation at different fruit development stages and their relationship with leaf soluble sugar content of blueberry. Scientia Agricultura Sinica, 2013, 46 (19): 4110- 4118.
doi: 10.3864/j.issn.0578-1752.2013.19.017 |
|
刘 祯, 陈锐帆, 申春晖, 等. 高州油茶糖积累及其代谢相关酶活性. 林业科学研究, 2024, 37 (4): 41- 51. | |
Liu Z, Chen R F, Shen C H, et al. Sugar accumulation and the relevant enzymes activities of Camellia drupifera. Forest Research, 2024, 37 (4): 41- 51. | |
苏梦云, 周国璋, 金正法. 杉木幼苗叶片蔗糖和淀粉含量的昼夜变化. 林业科学研究, 1996, 9 (6): 650- 653.
doi: 10.3321/j.issn:1001-1498.1996.06.016 |
|
Su M Y, Zhou G Z, Jin Z F. Diurnal course of sucrose and starch contents in leaves of seedling of Chinese fir. Forest Research, 1996, 9 (6): 650- 653.
doi: 10.3321/j.issn:1001-1498.1996.06.016 |
|
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策. 林业科学研究, 2010, 23 (1): 31- 37. | |
Su X H, Ding C J, Ma C G. Research progress and strategies of poplar breeding in China. Forest Research, 2010, 23 (1): 31- 37. | |
Chen L, Yuan Y, Wu J W, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. Rice, 2019, 12 (1): 34.
doi: 10.1186/s12284-019-0294-x |
|
Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 2010, 15 (2): 57- 71.
doi: 10.1016/j.tplants.2009.12.003 |
|
Ding Y H, Zhang R, Zhu L F, et al. An enhanced photosynthesis and carbohydrate metabolic capability contributes to heterosis of the cotton (Gossypium hirsutum) hybrid ‘Huaza Mian H318’, as revealed by genome-wide gene expression analysis. BMC Genomics, 2021, 22 (1): 277.
doi: 10.1186/s12864-021-07580-8 |
|
Fahrenkrog A M, Neves L G, Resende M F R, et al. Population genomics of the eastern cottonwood (Populus deltoides). Ecology and Evolution, 2017, 7 (22): 9426- 9440.
doi: 10.1002/ece3.3466 |
|
Fujimoto R, Taylor J M, Shirasawa S, et al. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (18): 7109- 7114. | |
Fünfgeld M M F F, Wang W, Ishihara H, et al. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. Nature Plants, 2022, 8 (5): 574- 582.
doi: 10.1038/s41477-022-01140-y |
|
Galtier N, Foyer C H, Huber J, et al. Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiology, 1993, 101 (2): 535- 543.
doi: 10.1104/pp.101.2.535 |
|
Gibon Y, Pyl E T, Sulpice R, et al. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell and Environment, 2009, 32 (7): 859- 874.
doi: 10.1111/j.1365-3040.2009.01965.x |
|
Graf A, Schlereth A, Stitt M, et al. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (20): 9458- 9463. | |
Izumi M, Hidema J, Makino A, et al. Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiology, 2013, 161 (4): 1682- 1693.
doi: 10.1104/pp.113.215632 |
|
Ko D K, Rohozinski D, Song Q X, et al. Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybrids. PLoS Genetics, 2016, 12 (7): e1006197.
doi: 10.1371/journal.pgen.1006197 |
|
Le Q T N, Sugi N, Furukawa J, et al. Association analysis of phenotypic and metabolomic changes in Arabidopsis accessions and their F1 hybrids affected by different photoperiod and sucrose supply. Plant Biotechnology, 2019, 36 (3): 155- 165.
doi: 10.5511/plantbiotechnology.19.0604a |
|
Lee S M, Ryu T H, Kim S I, et al. 2009. Kinetic and regulatory properties of plant ADP-glucose pyrophosphorylase genetically modified by heterologous expression of potato upreg mutants in vitro and in vivo. Plant Cell, Tissue and Organ Culture, 96: 161–170. | |
Li T Y, Wang F Q, Yasir M, et al. Expression patterns divergence of reciprocal F1 hybrids between Gossypium hirsutum and Gossypium barbadense reveals overdominance mediating interspecific biomass heterosis. Frontiers in Plant Science, 2022, 13, 892805.
doi: 10.3389/fpls.2022.892805 |
|
Li Z, Zhu A D, Song Q X, et al. Temporal regulation of the metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis. Plant Cell, 2020, 32 (12): 3706- 3722.
doi: 10.1105/tpc.20.00320 |
|
Maloney V J, Park J Y, Unda F, et al. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany, 2015, 66 (14): 4383- 4394.
doi: 10.1093/jxb/erv101 |
|
Ni Z F, Kim E-D, Ha M, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457 (7227): 327- 331.
doi: 10.1038/nature07523 |
|
Niittylä T, Messerli G, Trevisan M, et al. A previously unknown maltose transporter essential for starch degradation in leaves. Science, 2004, 303 (5654): 87- 89.
doi: 10.1126/science.1091811 |
|
Oiestad A J, Martin J M, Giroux M J. Overexpression of ADP-glucose pyrophosphorylase in both leaf and seed tissue synergistically increase biomass and seed number in rice (Oryza sativa ssp. japonica). Functional Plant Biology, 2016, 43 (12): 1194- 1204.
doi: 10.1071/FP16218 |
|
Pantin F, Simonneau T, Rolland G, et al. Control of leaf expansion: a developmental switch from metabolics to hydraulics. Plant Physiology, 2011, 156 (2): 803- 815.
doi: 10.1104/pp.111.176289 |
|
Park J Y, Canam T, Kang K Y, et al. Sucrose phosphate synthase expression influences poplar phenology. Tree Physiology, 2009, 29 (7): 937- 946.
doi: 10.1093/treephys/tpp028 |
|
Schleucher J, Vanderveer P J, Sharkey T D. Export of carbon from chloroplasts at night. Plant Physiology, 1998, 118, 1439- 1445.
doi: 10.1104/pp.118.4.1439 |
|
Schlosser A J, Martin J M, Beecher B S, et al. Enhanced rice growth is conferred by increased leaf ADP-glucose pyrophosphorylase activity. Journal of Plant Physiology and Pathology, 2014, 2 (4): 1000136. | |
Shi Q B, Xia Y, Xue N, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B-mediated light signal transduction. Journal of Integrative Plant Biology, 2024, 66 (5): 973- 985.
doi: 10.1111/jipb.13630 |
|
Smidansky E D, Martin J M, Hannah L C, et al. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta, 2003, 216 (4): 656- 664.
doi: 10.1007/s00425-002-0897-z |
|
Smith A M, Zeeman S C. Starch: a flexible, adaptable carbon store coupled to plant growth. Annual Review of Plant Biology, 2020, 71, 217- 245.
doi: 10.1146/annurev-arplant-050718-100241 |
|
Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology, 2012, 15 (3): 282- 292.
doi: 10.1016/j.pbi.2012.03.016 |
|
Tian H M, Ma L Y, Zhao C, et al. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochemical and Biophysical Research Communications, 2010, 393 (3): 365- 370.
doi: 10.1016/j.bbrc.2010.01.124 |
|
Wells R. Response of leaf ontogeny and photosynthetic activity to reproductive growth in cotton. Plant Physiology, 1988, 87 (1): 274- 279.
doi: 10.1104/pp.87.1.274 |
|
Wind J, Smeekens S, Hanson J. Sucrose: metabolite and signaling molecule. Phytochemistry, 2010, 71 (14/15): 1610- 1614. | |
Yang H, Wang X C, Wei Y X, et al. Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings. BMC Plant Biology, 2018, 18, 10.
doi: 10.1186/s12870-017-1203-3 |
|
Yi G, Shin H, Park H R, et al. Revealing biomass heterosis in the allodiploid × Brassicoraphanus, a hybrid between Brassica rapa and Raphanus sativus, through integrated transcriptome and metabolites analysis. BMC Plant Biology, 2020, 20, 252.
doi: 10.1186/s12870-020-02470-9 |
|
Zhang C J, Chen L, Shi D, et al. Characteristics of ribulose-1, 5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. South African Journal of Botany, 2007, 73 (1): 22- 28.
doi: 10.1016/j.sajb.2006.05.002 |
|
Zhang W X, Yuan Z S, Zhang J, et al. Identification and functional prediction of circRNAs in leaves of F1 hybrid poplars with different growth potential and their parents. International Journal of Molecular Sciences, 2023, 24 (3): 2284.
doi: 10.3390/ijms24032284 |
|
Zhao C Q, Yue Y S, Wu J Y, et al. Panicle removal delays plant senescence and enhances vegetative growth improving biomass production in switchgrass. Biomass and Bioenergy, 2023, 174, 106809.
doi: 10.1016/j.biombioe.2023.106809 |
[1] | 姜清彬,孟景祥,李保军,陈海军,方碧江,郭朗,田生辉. 8年生火力楠半同胞家系遗传评价与选育[J]. 林业科学, 2025, 61(1): 104-114. |
[2] | 魏瑞研,张卫华,徐放,林元震. 红锥生长性状的全基因组选择与优良子代早期评选[J]. 林业科学, 2024, 60(12): 83-91. |
[3] | 李政宏,丁昌俊,张伟溪,张静,沈乐,张腾倩,丁密,苏晓华,吴钟亲,方发之. 美洲黑杨无性系苗木对不同光周期处理的生长与生理响应[J]. 林业科学, 2023, 59(3): 127-144. |
[4] | 戴晓港,陈晨,薛良交,吴怀通,尹佟明. 基于物种特异性InDel标记鉴别美洲黑杨与小叶杨的杂交子代[J]. 林业科学, 2021, 57(11): 79-84. |
[5] | 陈存,丁昌俊,张静,李波,褚延广,苏晓华,黄秦军. 美洲黑杨群体结构分析及核心种质库构建[J]. 林业科学, 2020, 56(9): 67-76. |
[6] | 王云鹏,张蕊,周志春,黄少华,马丽珍,范辉华. 木荷优树自由授粉家系早期生长性状遗传变异动态规律[J]. 林业科学, 2020, 56(9): 77-86. |
[7] | 郭丽,张亮,李蓬勃,刘福,王越,孔祥波,张苏芳,张真. 不同栽培方式对4种黑杨派无性系生长及对春尺蠖抗性的影响[J]. 林业科学, 2020, 56(5): 193-202. |
[8] | 沈乐, 徐建民, 李光友, 陆钊华, 杨雪艳, 朱映安, 胡杨, 宋佩宁, 郭文仲. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7): 68-76. |
[9] | 哈蓉, 马亚平, 曹兵, 郭芳芸, 宋丽华. 模拟CO2浓度升高对宁夏枸杞营养生长与果实品质的影响[J]. 林业科学, 2019, 55(6): 28-36. |
[10] | 张江涛, 杨淑红, 朱镝, 朱延林, 刘友全. 美洲黑杨2025及其2个芽变品种苗对持续干旱的生理响应及抗旱性评价[J]. 林业科学, 2018, 54(6): 33-43. |
[11] | 张帅楠, 栾启福, 姜景民. 基于无损检测技术的湿地松生长及材性性状遗传变异分析[J]. 林业科学, 2017, 53(6): 30-36. |
[12] | 董虹妤, 刘青华, 周志春, 金国庆, 沈丹玉, 宋新回. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2): 65-75. |
[13] | 任嘉红, 李浩, 刘辉, 叶建仁, 吴小芹. 吡咯伯克霍尔德氏菌JK-SH007对杨树根际微生物数量及功能多样性的影响[J]. 林业科学, 2016, 52(5): 126-133. |
[14] | 丁昌俊, 张伟溪, 高暝, 黄秦军, 褚延广, 苏晓华. 不同生长势美洲黑杨转录组差异分析[J]. 林业科学, 2016, 52(3): 47-58. |
[15] | 胡建军, 赵自成, 苏雪辉, 李喜林, 卢孟柱. 杨树新品种‘中成1号’[J]. 林业科学, 2014, 50(5): 159-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||