丛毓, 贺红士, 谷晓楠, 等. 2016. 高山林线形成机理研究进展. 应用生态学报, 27(9):3035-3041. (Cong Y, He H S, Gu X N, et al. 2016. Progress of alpine treeline formation mechanism.Chinese Journal of Applied Ecology, 27(9):3035-3041.[in Chinese]) 杜启燃, 雷静品, 刘建锋, 等. 2014. CO2浓度增加和施氮对栓皮栎幼苗生理生态特征的影响. 应用生态学报, 25(1):24-30. (Du Q R, Lei J P, Liu J F, et al. 2014. Eco-physiological response of Quercusvariabilis seedlings to increased atmospheric CO2 and N supply. Chinese Journal of Applied Ecology,25(1):24-30.[in Chinese]) 付晶莹, 朱晓芳. 2008. 庐山不同海拔高度土壤养分含量分析. 安徽农学通报, 14(15):73-74. (Fu J Y, Zhu X F. 2008. Analysis on soil nutrient in different altitudes of Lushan. Anhui Agricultural Science,14(15):73-74.[in Chinese]) 胡启武, 宋明华, 欧阳华,等. 2007. 祁连山青海云杉叶片氮、磷含量随海拔变化特征. 西北植物学报, 27(10):2072-2079. (Hu Q W, Song M H, Ouyang H, et al. 2007. Variations in leaf N, P of Picea crassifolia alongthe altitude gradient in Qilian Mountains. Acta Botanica Boreali-Occidentalia Sinica, 27(10):2072-2079.[in Chinese]) 蒋高明. 2001. 当前植物生理生态学研究的几个热点问题. 植物生态学报. 25(5):514-519. (Jiang G M.2001. Review on some hot topics towards the researches in the field of plant physioecology. Chinese Journal of Plant Ecology, 25(5):514-519.[in Chinese]) 雷静品, 熊定鹏, 刘建锋, 等. 2012. 生境变化对栓皮栎幼苗营养元素含量的影响. 应用生态学报, 23(6):1441-1446. (Lei J P, Xiong D P, Liu J F, et al. 2012. Effects of habitat change on nutrient contents in Quercus variabilis seedlings. Chinese Journal of Applied Ecology,23(6):1441-1446.[in Chinese]) 李丹维, 王紫泉, 田海霞,等. 2017. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 54(1):160-170. (Li D W, Wang Z Q, Tian H X, et al. 2017. Carbon, nitrogen, phosphorus content in soil and ecological and chemical measurement characteristics at different altitudes of Taibai Mountains. Acta Pedologica Sinica, 54(1):160-170.[in Chinese]) 李轩然, 刘琪璟, 蔡哲,等. 2007.千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31(1):93-101. (Li X R, Liu Q J, Cai Z, et al. 2007. Specific leaf area and leaf area index of conifer plantations in Qianyan Station of subtropical China. Chinese Journal of Plant Ecology,31(1):93-101.[in Chinese]) 刘兴良, 刘世荣, 宿以明,等. 2006. 巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应. 林业科学, 42(2):1-7. (Liu X L, Liu S R, Su Y M, et al. 2006. Aboveground biomass of Quercus aquifolioides shrub community and its responses to altitudinal gradients in Balangshan Mountain, Shichuan province. Scientia Silvae Sinicae, 42(2):1-7.[in Chinese]) 刘勇, 冯美利, 曹红星,等. 2014. 低温胁迫对油棕叶片养分含量变化的影响. 热带农业科学, 34(6):16-19. (Liu Y, Feng M L, Cao H X. et al. 2014. Effect of low temperature on theleaf nutrient content of oil palm. Chinese Journal of Tropical Agriculture, 34 (6):16-19.[in Chinese]) 罗绪强, 王世杰, 刘秀明. 2007. 陆地生态系统植物的氮源及氮素吸收.生态学杂志, 26(7):1094-1100. (Luo X Q,Wang S J, Liu X M. 2007. Nitrogen source and its uptake by plants interrestrial ecosystems. Chinese Journal of Ecology, 26(7):1094-1100.[in Chinese]) 祁建, 马克明, 张育新. 2007. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释. 生态学报, 27(3):930-937. (Qi J, Ma K M, Zhang Y X. 2007. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations. Acta Ecologica Sinica, 27(3):930-937.[in Chinese]) 汪贵斌, 曹福亮. 2004. 不同土壤水分含量下落羽杉根、茎、叶营养水平的差异. 林业科学研究, 17(2):213-219. (Wang G B, Cao F L. 2004. Effects of soil water contents on nutrient uptake and allocation of Baldcypress.Forest Research, 17(2):213-219.[in Chinese]) 乌凤章, 王贺新, 徐国辉,等. 2015. 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 51(7):116-128. (Wu F Z, Wang H X, Xu G H, et al. 2015. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae, 51(7):116-128.[in Chinese]) 徐宪根, 周焱, 阮宏华,等. 2009. 武夷山不同海拔高度土壤氮矿化对温度变化的响应. 生态学杂志, 28(7):1298-1302. (Xu X G, Zhou Y, Ruan H H, et al. 2009. Responses of soil nitrogen mineralization to temperature change along an elevation gradient in Wuyi Mountain, China. Chinese Journal of Ecology, 28(7):1298-1302.[in Chinese]) 许振柱, 周广胜. 2003. 陆生植物对全球变化的适应性研究进展. 自然科学进展, 13(2):113-120. (Xu Z Z, Zhou G S. 2003. Research progress on the adaptability of terrestrial plants to global change China.Progress in Natural Science, 13(2):113-120.[in Chinese]) 闫霜, 张黎, 景元书,等. 2014. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 38(6):640-652. (Yan S, Zhang L, Jing Y S, et al. 2014. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chinese Journal of Plant Ecology, 38(6):640-652.[in Chinese]) 张立杰, 刘鹄. 2012. 祁连山林线区域青海云杉种群对气候变化的响应. 林业科学, 48(1):18-21. (Zhang L J, Liu H. 2012. Response of Picea crassifolia population to climate change at the treeline ecotones in Qilian Mountains. Scientia Silvae Sinicae, 48(1):18-21.[in Chinese]) 周才平, 欧阳华. 2001a. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响. 植物生态学报, 25(2):204-209. (Zhou C P, Ouyang H. 2001a. Temperature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest. Chinese Journal of Plant Ecology, 25(2):204-209.[in Chinese]) 周才平, 欧阳华. 2001b. 长白山两种主要林型下土壤氮矿化速率与温度的关系. 生态学报, 21(9):1469-1473. (Zhou C P, Ouyang H. 2001b. Effect of temperature on nitrogen mineralization at optimum and saturated soil water content in two types of forest in Changbai Mountain. Acta Ecologica Sinica, 21(9):1469-1473.[in Chinese]) Achten W M J, Maes W H, Reubens B, et al. 2010. Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass & Bioenergy, 34(5):667-676. Asher C J, Ozanne P G, Loneragan J F. 1965. A method of controlling the ionic environment of plant roots. Soil Science, 100(3):149-156. Bekker M F. 2005. Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana,U.S.A. Arctic, Antarct & Alps Research, 37(1):97-107. Bremer E, Kuikman P. 1997. Influence of competition for nitrogen in soil on net mineralization of nitrogen. Plant & Soil, 190(1):119-126. Crescente MF, Gratani L, Larcher W. 2002. Shoot growth efficiency and production of Quercus ilex L. in differentclimates. Flora, 197(1):2-9. Cuevas, Jaime G. 2000. Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile.Journal of Ecology, 88(5):840-855. Danby R K, Hik D S. 2007. Variability, contingency and rapid change in recent subarctic alpine treeline dynamics. Journal of Ecology,95(2):352-363. Gilfedder L. 2010. Factors influencing the maintenance of an inverted Eucalyptus coccifera treeline on the Mt Wellington Plateau, Tasmania. Austral Ecology, 13(4):495-503. He J S, Fang J Y, Wang Z H, et al. 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in thegrassland biomes of China. Oecologia, 149(1):115-122. Holtmeier F K, Broll G. 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology & Biogeography,14(5):395-410. Johnson D M, Germino M J, Smith W K. 2004. Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiology, 24(4):377-386. Körner C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 15(4):445-459. Körner C. 1999. Alpine plant life:Functional plant ecology of high mountain ecosystems. Berlin Spring-Verlag:338. Körner C, Paulsen J. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5):713-732. Kong G, Luo, T, Liu, X, et al. 2012. Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecology, 213(11):1843-1855. Lahti M, Aphalo P J, Finér L, et al. 2005. Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiology, 25(1):115-122. Leif K. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005:implications for tree line theory and climate change ecology. Journal of Ecology, 95(1):41-52. LloydA H, Fastie C L. 2002. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. climatic change, 52(4):481-509. Li C, Wu C, Duan B, et al. 2009. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides, along an altitudinal gradient. Trees, 23(5):1109-1121. Li C, Zhang X, Liu X, et al. 2015. Leaf morphological and physiological responses of Quercus aquifolioidesalong an altitudinal gradient. Silva Fennica, 40(1):5-13. Li M H, Krauchi N, Dobbertin M. 2006. Biomass distributionof different aged needles in young and old Pinus cembratrees at highland and lowland sites. Trees, 20(5):611-618. Li M H, Yang J. 2004. Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science, 61(2):217-223. Luo T, Pan Y, Ou Y H, et al. 2004. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology & Biogeography, 13(4):345-358. Mäkinen H, Nöjd P, Mielikäinen K. 2000. Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finland to the Arctic timberline. Canadian Journal of Forest Research, 30(30):769-777. Marschner H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, Lndon. Martine J. van de Weg, Patrick Meir, John Grace, et al. 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Transactions of the Botanical Society of Edinburgh, 2(3):243-254. Michel D, Rechenberger J, Hartleb O. 2002. Population stasis in a high-elevation herbaceous plant under moderate climate warming. Basic & Applied Ecology, 3(1):77-83. Payette S, Fortin M J. 2001. The subarctic forest-tundra:the structure of a biome in a changing climate. BioScience, 51(9):709-718. Reich P B, Oleksyn J. 2004. Global patterns of plant leaf Nand P in relation to temperature and latitude. PNAS,101(30):11001-11006. Reich P B, Tjoelker M G, Machado J L, et al. 2006. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439(7075):457-461. Richardson A D, Berlyn G P. 2002. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89(1):88-94. Robredo A, Pérez-López U, Maza H S, et al. 2007. Elevated CO2 alleviates the impact of drought on barley improving water status bylowering stomatal conductance and delaying its effects onphotosynthesis. Environmental and Experimental Botany, 59 (3):252-263. Smith W K, Germino M J, Johnson D M, et al. 2009. The altitude of alpine treeline:a bellwether of climate change effects. Botanical Review,75(2):163-190. Sveinbjörnsson B, Smith M, Traustason T, et al. 2010. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska. Oecologia, 163(4):833-843. Takashima T, Hikosaka K, Hirose T. 2004. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell & Environment, 27(8):1047-1054. Wullschleger S, Tschaplinski T, Norby R. 2002. Plant water relations atelevated CO2- implications for water-limitedenvironments. Plant, Cell and Environment, 25(2):319-331. Yu D, Wang Q, Liu J, et al. 2014. Formation mechanisms of the alpine Erman's birch (Betula ermanii) treeline on Changbai Mountain in northeast China. Trees, 28(3):935-947. Zhu K, Woodall C W, Clark J S. 2012. Failure to migrate:lack of tree range expansion in response to climate change. Global Change Biology, 18(3):1042-1052. |