林业科学 ›› 2023, Vol. 59 ›› Issue (7): 145-154.doi: 10.11707/j.1001-7488.LYKX20210727
• 综合评述 • 上一篇
殷方宇,欧阳白,蒋佳荔*,李珠,吕建雄
收稿日期:
2021-09-27
出版日期:
2023-07-25
发布日期:
2023-09-08
通讯作者:
蒋佳荔
基金资助:
Fangyu Yin,Bai Ouyang,Jiali Jiang*,Zhu Li,Jianxiong Lü
Received:
2021-09-27
Online:
2023-07-25
Published:
2023-09-08
Contact:
Jiali Jiang
摘要:
木材干缩湿胀是影响木材加工利用的关键特性,与木制品尺寸和形状的稳定性密切相关。木材宏观到微观层次分明的多尺度分级结构导致木材干缩湿胀行为的复杂性。将木材干缩湿胀研究从宏观尺度引向介观和微观尺度,建立三者之间的有机联系,有助于阐明木材干缩湿胀行为的发生机制和演变机理,对深入认识木材性质,合理、高效利用木材具有重要理论价值和实践意义。本研究综述木材宏观尺度(无疵试样)、介观尺度(生长轮)和微观尺度(木材细胞)3种层级单元的干缩湿胀行为及其滞后现象,分析木材不同尺度结构的干缩湿胀行为发生和演变规律,介绍基于多尺度结构的木材干缩湿胀测试方法和技术手段。同时,对今后开展木材多尺度结构干缩湿胀行为研究提出建议:1) 在介观和微观尺度上系统开展针叶材和阔叶材基于生长轮和木材细胞的干缩湿胀行为研究,建立木材多尺度结构与干缩湿胀行为之间的构效关系;2) 揭示基于各向异性、非均质性和细胞类型多样性引发的干缩湿胀行为差异化响应规律及其互作机制;3) 阐明木材干缩湿胀行为的时间滞后和湿胀滞后现象;4) 引入相关理论模型,如有限元法的应用,构建木材多尺度结构的自由缩胀可视化有限元模型。
中图分类号:
殷方宇,欧阳白,蒋佳荔,李珠,吕建雄. 木材多尺度结构的干缩湿胀研究进展[J]. 林业科学, 2023, 59(7): 145-154.
Fangyu Yin,Bai Ouyang,Jiali Jiang,Zhu Li,Jianxiong Lü. Research Development of Shrinkage and Swelling of Wood with Multi-Scale Structures[J]. Scientia Silvae Sinicae, 2023, 59(7): 145-154.
表1
常见木材干缩湿胀测试方法比较"
测试方法 Test method | 应用尺度 Application of scale | 优点 Advantages | 缺点 Disadvantages | 测量结果主要 影响因素 Main effect factors on results |
游标卡尺 Vernier caliper | 宏观尺度 Macroscale | ①操作简单Test operation is sample ②易获得Easy to get | ①多次测量取平均Multiple measurements are averaged ②精准度低 Precision low | 使用者 User |
吸附测试系统Sorption test system(SPS) | 宏观尺度 Macroscale | ①11个样品可同时测定Eleven samples can be measured simultaneously in one experiment ②任意相对湿度条件下含水率与干缩湿胀应变量的同步测定Simultaneous determination of moisture content and shrinkage and swelling strain under arbitrary relative humidity ③分辨率较高:2 046×2 046 High resolution:2 046×2 046 | ①试样中心需钻孔 Sample center needs to be drilled ②相机无放大倍数 Camera has no magnification ③样品无法二次使用 Sample cannot be reused | 图像分析 Image analysis |
数字图像相关 Digital image correlation(DIC) | 介观尺度 Mesoscale | ①操作简单Test operation is simple ②成本低Cost is low ③可与多种显微设备配合使用提高分辨率 Can be used with a variety of microscopic equipment to improve resolution | ①试样表面需标记处理 Surface of the sample shall be marked ②产生伪应变Generating pseudo-strains ③无法同步获取含水率,需设置对照组Unable to obtain moisture content synchronously,a control group needs to be set up | ①样品制备 Sample preparation ②图像分析 Image analysis |
共聚焦激光扫描显微镜 Confocal laser scanning microscopy(CLSM) | 介观尺度 Mesoscale | ①操作简单Test operation is simple ②可任意角度旋转,观察细胞Rotate at any angle to observe the cells | ①无法同步获取含水率,需设置对照组Unable to obtain moisture content synchronously,a control group needs to be set up ②成像范围小,分辨率低:640×480 Small imaging range and low resolution:640×480 | ①样品制备 Sample preparation ②图像分析 Image analysis |
动态水分吸附分析仪 Dynamic vapor sorption(DVS) | 介观尺度 Mesoscale | ①任意相对湿度条件下含水率与干缩湿胀应变量的同步测定Simultaneous determination of moisture content and shrinkage and swelling strain under arbitrary relative humidity ②多种视野大小可供选择Multiple view sizes available | 分辨率有待提高:1 280×960 Resolution to be improved:1 280×960 | ①样品表面平整度Surface smoothness of sample ②图像分析 Image analysis |
X射线断层扫描显微镜 X-ray tomographic microscopy | 介观尺度/ 微观尺度 Mesoscale/ Microscale | ①三维可视化3D visualization ②可建立模型Sample model can be established | ①无法同步获取含水率,需设置对照组Unable to obtain moisture content synchronously,a control group needs to be set up ②试验周期长Long test period ③成本高High cost | 数据分析Date analysis |
落射光显微镜联用CCD相机 Epi-illumination microscopy equipped with a CCD | 微观尺度 Microscale | ①操作简单Test operation is simple ②可观察荧光现象Fluorescence can be observed | ①无法同步获取含水率,需设置对照组Unable to obtain moisture content synchronously,a control group needs to be set up ②分辨率有待提高:1 280×1 000 Resolution to be improved 1 280×1 000 | ①样品表面平整度Surface smoothness of sample ②图像分析 Image analysis |
环境扫描电子显微镜Environmental scanning electron microscope(ESEM) | 微观尺度 Microscale | ① 分辨率极高:6 144×4 096 Extremely high resolution:6 144×4 096 ②拍摄图像无伪影Image is taken without artifacts | ①无法同步获取含水率,需设置对照组Unable to obtain moisture content synchronously,a control group needs to be set up ②电子束会对细胞壁造成损伤Electron beam causes damage to the cell wall | ①试验条件和材料Experimental conditions and materials ②图像分析Image analysis |
吕建雄, 林志远, 赵有科, 等. 杉木和I-72杨人工林木材干缩性质的研究. 林业科学, 2005, 41 (5): 127- 131.
doi: 10.11707/j.1001-7488.20050523 |
|
Lü J X, Lin Z Y, Zhao Y K, et al. Studies on the shrinkage properties of Chinese fir and I-72 poplar plantation wood. Scientia Silvae Sinicae, 2005, 41 (5): 127- 131.
doi: 10.11707/j.1001-7488.20050523 |
|
欧阳白. 2020. 楸木生长轮内早材与晚材干缩/湿胀行为研究. 北京: 中国林业科学研究院. | |
Ouyang B. 2020. A study on the shrinkage/swelling behavior in earlywood and latewood of the same growth ring of Catalpa bungei. Beijing: Chinese Academy of Forestry.[in Chinese] | |
欧阳白, 李 珠, 蒋佳荔. 楸木早/晚材水分吸着与湿胀行为. 林业科学, 2021, 57 (5): 176- 183. | |
Ouyang B, Li Z, Jiang J L. Hygroscopicity and swelling behavior of Catalpa bungei earlywood and latewood . Scientia Silvae Sinicae, 2021, 57 (5): 176- 183. | |
石传喜, 于英良, 朱莹琦, 等. 6个杨树无性系木材密度及干缩性能差异. 林业工程学报, 2020, 5 (5): 57- 62. | |
Shi C X, Yu Y L, Zhu Y Q, et al. The difference of density and shrinkage properties of six cloned poplar trees. Journal of Forestry Engineering, 2020, 5 (5): 57- 62. | |
杨甜甜, 马尔妮. 水分周期性作用下木材的动态吸着和干缩湿胀. 功能材料, 2013, 44 (24): 3576- 3580. | |
Yang T T, Ma E N. Dynamic sorption and hygroexpansion of wood by humidity cyclically changing effect. Journal of Functional Materials, 2013, 44 (24): 3576- 3580. | |
Abe K, Yamamoto H. Behavior of the cellulose microfibril in shrinking woods. Journal of Wood Science, 2006, 52 (1): 15- 19.
doi: 10.1007/s10086-005-0715-x |
|
Arévalo R, Hernández R E. Influence of moisture sorption on swelling of mahogany (Swietenia macrophylla King) wood . Holzforschung, 2001, 55 (6): 590- 594.
doi: 10.1515/HF.2001.096 |
|
Arzola-Villegas X, Lakes R, Plaza N Z, et al. Wood moisture-induced swelling at the cellular scale—ab intra. Forests, 2019, 10 (11): 996- 1015.
doi: 10.3390/f10110996 |
|
Badel E, Perré P. The shrinkage of oak predicted from its anatomical pattern: validation of a cognitive model. Trees-Structure and Function, 2007, 51 (1): 111- 120. | |
Bertaud F, Holmbom B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology, 2004, 38 (4): 245- 256. | |
Bonarski J T, Kifetew G, Olek W. Effects of cell wall ultrastructure on the transverse shrinkage anisotropy of Scots pine wood. Holzforschung, 2015, 69 (4): 501- 507.
doi: 10.1515/hf-2014-0075 |
|
Chauhan S S, Aggarwal P. Effect of moisture sorption state on transverse dimensional changes in wood. Holz Als Roh-Und Werkstoff, 2004, 62 (1): 50- 55.
doi: 10.1007/s00107-003-0437-y |
|
de Mil T, Tarelkin Y, Hahn S, et al. Wood density profiles and their corresponding tissue fractions in tropical angiosperm trees. Forests, 2018, 9 (12): 763- 776.
doi: 10.3390/f9120763 |
|
Derome D, Griffa M, Koebel M, et al. Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. Journal of Structural Biology, 2011, 173 (1): 180- 190.
doi: 10.1016/j.jsb.2010.08.011 |
|
Duong D, Matsumura J. Transverse shrinkage variations within tree stems of Melia azedarach planted in northern Vietnam . Journal of Wood Science, 2018, 64 (6): 720- 729.
doi: 10.1007/s10086-018-1756-2 |
|
Donaldson L. Within- and between-tree variation in microfibril angle in Pinus radiata . New Zealand Journal of Forestry Science, 1992, 22 (1): 77- 86. | |
Donaldson L. Microfibril angle: measurement, variation and relationships – a review. IAWA Journal, 2008, 29 (4): 345- 386.
doi: 10.1163/22941932-90000192 |
|
Dong F, Olsson A M, Salmén L. Fibre morphological effects on mechano-sorptive creep. Wood Science and Technology, 2010, 44 (3): 475- 483.
doi: 10.1007/s00226-009-0300-3 |
|
Garcia R A, Rosero-Alvarado J, Hernández R E. Full-field moisture-induced strains of the different tissues of tamarack and red oak woods assessed by 3D digital image correlation. Wood Science and Technology, 2019, 54 (1): 139- 159. | |
Harrington J. 2002. Hierarchical modelling of softwood hygro-elastic properties. New Zealand: PhD thesis of Universität Christchurch. | |
Hernández R E. Influence of moisture sorption history on the swelling of sugar maple wood and some tropical hardwoods. Wood Science and Technology, 1993, 27 (5): 337- 345. | |
Hernández R E. Swelling properties of hardwoods as affected by their extraneous substances, wood density and interlocked grain. Wood and Fiber Science, 2009, 39 (5): 146- 158. | |
Herritsch A. 2007. Investigations on wood stability and related properties of radiata pine. Christchurch: University of Canterbury. | |
Hunt D G. Longitudinal shrinkage-moisture relations in softwood. Journal of Materials Science, 1990, 25 (8): 3671- 3676.
doi: 10.1007/BF00575403 |
|
Ivković M, Gapare W J, Abarquez A, et al. Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Science and Technology, 2009, 43 (3/4): 237- 257. | |
Joffre T, Isaksson P, Dumont P J, et al. A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics, 2016, 56 (5): 723- 733.
doi: 10.1007/s11340-015-0119-9 |
|
Kifetew G, Lindberg H, Wiklund M. Tangential and radial deformation field measurements on wood during drying. Wood Science and Technology, 1997, 31 (1): 35- 44.
doi: 10.1007/BF00705698 |
|
Kliger R, Johansson M, Perstorper M, et al. Distortion of Norway spruce timber, part 3: modeling bow and spring. Europen Journal of Wood & Wood Products, 2003, 61 (4): 241- 250. | |
Kosiachevskyi D, Hachem C E I, Abahri K, et al. Biomaterials heterogeneous displacement, strain and swelling under hydric sorption/desorption: 2D image correlation on spruce wood. Construction and Building Materials, 2021, 286, 122997.
doi: 10.1016/j.conbuildmat.2021.122997 |
|
Lanvermann C, Wittel F K, Niemz P. Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling. European Journal of Wood and Wood Products, 2014, 72 (1): 43- 52.
doi: 10.1007/s00107-013-0746-8 |
|
Lee S S, Jeong G Y. Effects of sample size on swelling and shrinkage of Larix kaempferi and Cryptomeria japonica as determined by digital caliper, image analysis, and digital image correlation(DIC) . Holzforschung, 2018, 72 (6): 477- 488.
doi: 10.1515/hf-2017-0120 |
|
Leonardon M, Altaner C M, Vihermaa L, et al. Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age. European Journal of Wood and Wood Products, 2010, 68 (1): 87- 94.
doi: 10.1007/s00107-009-0355-8 |
|
Ma Q, Rudolph V. Dimensional change behavior of Caribbean pine using an environmental scanning electron microscope. Drying Technology, 2006, 24 (11): 1397- 1403.
doi: 10.1080/07373930600952743 |
|
Ma E, Nakao T, Zhao G J, et al. Relation between moisture sorption and hygroexpansion of sitka spruce during adsorption processes. Wood and Fiber Science, 2010, 42 (3): 304- 309. | |
Meier H. 1985. Localization of polysaccharides in wood cell walls//Biosynthesis and Biodegradation of Wood Components. Amsterdam: Elsevier, 43-50. | |
Murata K, Masuda M. Observation of the swelling behavior of coniferous cells using a confocal scanning laser microscope and a digital image correlation method. Materials Science Research International, 2001a, 7 (3): 200- 205. | |
Murata K, Masuda M. Observation of microscopic swelling behavior of the cell wall. Journal of Wood Science, 2001b, 47 (6): 507- 509.
doi: 10.1007/BF00767907 |
|
Murata K, Masuda M. Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. Journal of the Society of Materials Science Japan, 2006, 50 (9): 200- 205. | |
Nopens M, Riegler M, Hansmann C, et al. Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 2019, 9 (1): 10309.
doi: 10.1038/s41598-019-46381-8 |
|
Ożyhar T. 2013. Moisture and time-dependent orthotropic mechanical characterization of beech wood. Switzerland: ETH Zürich. | |
Pang S S, Herritsch A. 2005. Physical properties of earlywood and latewood of Pinus radiata D. Don: Anisotropic shrinkage, equilibrium moisture content and fibre saturation point. Holzforschung, 59(6): 654-661. | |
Patera A, Derome D, Griffa M, et al. Hysteresis in swelling and in sorption of wood tissue. Journal of Structural Biology, 2013, 182 (3): 226- 234.
doi: 10.1016/j.jsb.2013.03.003 |
|
Patera A, Van den Bulcke J, Boone M N, et al. Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Science and Technology, 2018, 52 (1): 91- 114.
doi: 10.1007/s00226-017-0960-3 |
|
Peng M K, Ho Y C, Wang W C, et al. Measurement of wood shrinkage in jack pine using three dimensional digital image correlation(DIC). Holzforschung, 2012, 66 (5): 639- 643.
doi: 10.1515/hf-2011-0124 |
|
Rafsanjani A, Derome D, Wittel F K, et al. Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Composites Science and Technology, 2012a, 72 (6): 744- 751.
doi: 10.1016/j.compscitech.2012.02.001 |
|
Rafsanjani A, Derome D, Carmeliet J. The role of geometrical disorder on swelling anisotropy of cellular solids. Mechanics of Materials, 2012b, 55 (1): 49- 59. | |
Sakagami H, Matsumura J, Oda K. Shrinkage of tracheid cells with desorption visualized by confocal laser scanning microscopy. IAWA Journal, 2007, 28 (1): 29- 37.
doi: 10.1163/22941932-90001615 |
|
Schulgasser K, Witztum A. How the relationship between density and shrinkage of wood depends on its microstructure. Wood Science and Technology, 2015, 49 (2): 389- 401.
doi: 10.1007/s00226-015-0699-7 |
|
Silva C, Branco J M, Camoes A, et al. Dimensional variation of three softwood due to hygroscopic behavior. Construction and Building Materials, 2014, 59, 25- 31.
doi: 10.1016/j.conbuildmat.2014.02.037 |
|
Skaar C. 1988. Wood-water relations. Berlin Heidelberg: Springer, 122-176. | |
Spear M, Walker J C F. 2006. Dimensional instability in timber. Berlin Heidelberg: Springer, 95-120. | |
Stöhr H P. Shrinkage differential as a measure for drying stress determination. Wood Science and Technology, 1988, 22 (2): 121- 128.
doi: 10.1007/BF00355848 |
|
Taguchi A, Murata K, Nakano T. Observation of cell shapes in wood cross-sections during water adsorption by confocal laser-scanning microscopy (CLSM). Holzforschung, 2010, 64 (2): 627- 631. | |
Taguchi A, Murata K, Nakamura M, et al. Scale effect in the anisotropic deformation change of tracheid cells during water adsorption. Holzforschung, 2011, 65 (2): 253- 256. | |
Taylor A, Plank B, Standfest G, et al. Beech wood shrinkage observed at the microscale by a tione series of X-ray computed tomographs (μXCT). Holzforschung, 2013, 67 (2): 201- 205.
doi: 10.1515/hf-2012-0100 |
|
Walker J C F. Primary wood processing: principles and practice. International Forestry Review, 2006, 9 (1): 97- 98. | |
Wang E, Chen T, Pang S, et al. Variation in anisotropic shrinkage of plantation crown Pinus radiata wood . Maderas-Ciencia Y Tecnlogía, 2008, 10 (3): 243- 249. | |
Yamashita K, Hirakawa Y, Nakatani H, et al. Longitudinal shrinkage variations within trees of sugi (Cryptomeria japonica) cultivars . Journal of Wood Science, 2009a, 55 (1): 1- 7.
doi: 10.1007/s10086-008-0987-z |
|
Yamashita K, Hirakawa Y, Nakatani H, et al. Tangential and radial shrinkage variation within trees in sugi (Cryptomeria japonica) cultivars . Journal of Wood Science, 2009b, 55 (3): 161- 168.
doi: 10.1007/s10086-008-1012-2 |
|
Zhan T Y, Lyu J X, Eder M. In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level. Wood Science and Technology, 2021, 55 (5): 1359- 1377.
doi: 10.1007/s00226-021-01321-6 |
|
Zhang M, Smith B, McArdle B, et al. Dimensional changes of tracheids during drying of radiata pine (Pinus radiata) compression woods: a study using variable-pressure scanning electron microscopy (VP-SEM) . Plants, 2018, 7 (1): 14- 32.
doi: 10.3390/plants7010014 |
|
Zhang S Y, Ren H Q, Jiang Z H. Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana) . Journal of Wood Science, 2021, 67 (1): 1- 10.
doi: 10.1186/s10086-020-01935-7 |
[1] | 皇权飞,黄艳辉,刘颖,林欣雨. 环保快干型木蜡油的制备及其涂饰性能[J]. 林业科学, 2023, 59(7): 137-144. |
[2] | 王正,谷晓雨,周宇昊,张一凡,沈肇雨,黄俣劼. 测试木材剪切模量的自由方板扭转模态法[J]. 林业科学, 2023, 59(5): 145-156. |
[3] | 姚建峰,郭旭展,符利勇,王雪峰,雷相东,卢军,郑一力,宋新宇. 微钻阻力法间接测量木材密度[J]. 林业科学, 2022, 58(9): 138-147. |
[4] | 张兹鹏,王君杰,刘索名,姜立春. 形率对白桦单木材积和生物量预测精度的影响[J]. 林业科学, 2022, 58(5): 31-39. |
[5] | 金枝,李伯涛,尹江苹,陈倩,付跃进,吕斌. 木材孔隙连通性评价研究进展[J]. 林业科学, 2022, 58(5): 177-186. |
[6] | 朱亮亮,陈太安,郑永军,张凯睿,张钧,郑梅,郑荣波. TiO2@SiO2-脱木素木材的制备及其耐光性增强[J]. 林业科学, 2022, 58(3): 129-138. |
[7] | 赵厚本,周光益,李兆佳,邱治军,吴仲民,王旭. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23-31. |
[8] | 卢芸,王慧庆,骆立,陈粤,张治国,马星霞. 古船封护防腐处理技术进展及纳米纤维素应用前景探讨[J]. 林业科学, 2022, 58(2): 182-195. |
[9] | 岳孔,陆栋,胡文杰,戴长路,吴鹏,陆伟东. 高温中木材顺纹弦面抗剪强度[J]. 林业科学, 2022, 58(1): 111-118. |
[10] | 张晓文,于青军,罗桂生,贾茜,吴丹妮,贾忠奎. 平泉油松建筑材林立地类型划分及立地质量评价[J]. 林业科学, 2021, 57(9): 1-12. |
[11] | 何拓,刘守佳,陆杨,张永刚,焦立超,殷亚方. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统[J]. 林业科学, 2021, 57(9): 152-159. |
[12] | 付宗营,蔡英春,周永东. 木材干燥应力研究现状与趋势[J]. 林业科学, 2021, 57(9): 160-167. |
[13] | 张斌,马星霞,蒋明亮,李晓文. 古建筑木构件有机型防腐防虫剂制备及其效果[J]. 林业科学, 2021, 57(8): 167-175. |
[14] | 赵子宇,杨霄霞,郭慧,葛浙东,周玉成. 基于卷积神经网络模型的木材宏、微观辨识方法[J]. 林业科学, 2021, 57(6): 134-143. |
[15] | 陈悰,王望,曹金珍. 亚麻油/混合蜡乳液构建木材内双层疏水体系[J]. 林业科学, 2021, 57(4): 124-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||