|  | 邓旭冉, 闵少波, 徐静远, 等.  深度细粒度图像识别研究综述. 南京信息工程大学学报: 自然科学版, 2019, 11 (6): 625- 637. | 
																													
																						|  | Deng X R ,  Min S B ,  Xu J Y , et al.  A survey of deep fine-grained visual categorization. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2019, 11 (6): 625- 637. | 
																													
																						|  | 何拓, 高瑞清, 焦立超, 等.  世界木材标本馆现状与发展建议. 木材工业, 2020, 34 (3): 40- 43. | 
																													
																						|  | He T ,  Gao R Q ,  Jiao L C , et al.  Present status of global leading xylaria and suggestions for xylaria development in China. China Wood Industry, 2020, 34 (3): 40- 43. | 
																													
																						|  | 何拓, 焦立超, 郭娟, 等.  木材信息学: 发展、应用与展望. 木材科学与技术, 2021a, 35 (4): 15- 24. | 
																													
																						|  | He T ,  Jiao L C ,  Guo J , et al.  Wood informatics: history of development, application, and prospective trend. Chinese Journal of Wood Science and Technology, 2021a, 35 (4): 15- 24. | 
																													
																						|  | 何拓, 刘守佳, 陆杨, 等.  木材树种计算机视觉识别技术发展与应用. 林业工程学报, 2021b, 6 (3): 18- 27. | 
																													
																						|  | He T ,  Liu S J ,  Lu Y , et al.  Advances and prospects of wood identification technology coupled with computer vision. Journal of Forestry Engineering, 2020, 6 (3): 18- 27. | 
																													
																						|  | 胡明越. 2019. 基于深度学习的树种识别算法研究. 杭州: 浙江农林大学硕士学位论文. | 
																													
																						|  | Hu M Y. 2019. The study of tree species identification based on deep learning method. Hangzhou: MS thesis of Zhejiang A&F Univeristy. [in Chinese] | 
																													
																						|  | 姜笑梅, 殷亚方, 刘波.  木材树种识别技术现状、发展与展望. 木材工业, 2010, 24 (4): 36- 39. | 
																													
																						|  | Jiang X M ,  Yin Y F ,  Liu B .  Current status, development and prospect of wood identification technology. China Wood Industry, 2010, 24 (4): 36- 39. | 
																													
																						|  | 焦立超, 何拓, 尹江苹, 等.  第18届CITES缔约方大会木材树种管制变化. 木材工业, 2019, 33 (6): 24- 28. | 
																													
																						|  | Jiao L C ,  He T ,  Yin J P , et al.  Changes of CITES-listed timber species in Cop 18th. China Wood Industry, 2019, 33 (6): 24- 28. | 
																													
																						|  | 李桂兰. 2007. 亚洲主要商品木材构造与识别研究. 南宁: 广西大学硕士学位论文. | 
																													
																						|  | Li G L. 2007. Research on the structure and identification of wood from Asia. Nanning: MS thesis of Guangxi University. [in Chinese] | 
																													
																						|  | 刘子豪, 祁亨年, 张广群, 等.  基于横切面微观构造图像的木材识别方法. 林业科学, 2013, 49 (11): 116- 121. | 
																													
																						|  | Liu Z H ,  Qi H N ,  Zhang G Q , et al.  Wood identification method based on microstructure images in cross-section. Scientia Silvae Sinicae, 2013, 49 (11): 116- 121. | 
																													
																						|  | 梅萍, 夏兆鹏, 张耀丽, 等.  檀香紫檀和染料紫檀快速微损鉴别方法. 福建农林大学学报: 自然科学版, 2017, 46 (2): 154- 158. | 
																													
																						|  | Mei P ,  Xia Z P ,  Zhang Y L , et al.  Micro-loss method of identifying Pterocarpus santalinus and Pterocarpus tinctoricus. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2017, 46 (2): 154- 158. | 
																													
																						|  | 王登举.  全球林产品贸易现状与特点. 国际木业, 2019, (3): 49- 53. | 
																													
																						|  | Wang D J .  Status quo and characteristics of global trade of forest products. International Wood Industry, 2019, (3): 49- 53. | 
																													
																						|  | 殷亚方, 何拓, 焦立超, 等. 2019. 一种木材识别方法及系统: ZL201810830841. 3. | 
																													
																						|  | Yin Y F, He T, Jiao L C, et al. 2019. A method and system for wood identification: ZL201810830841. 3. [in Chinese] | 
																													
																						|  | Brancalion P H S ,  Almeida D R A ,  Vidal E , et al.  Fake legal logging in the Brazilian Amazon. Science Advances, 2018, 4 (8): eaat1192. doi: 10.1126/sciadv.aat1192
 | 
																													
																						|  | Deklerck V ,  Mortier T ,  Goeders N , et al.  A protocol for automated timber species identification using metabolome profiling. Wood Science and Technology, 2019, 53, 953- 965. doi: 10.1007/s00226-021-01302-9
 | 
																													
																						|  | He K ,  Zhang X ,  Ren S , et al.  Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. Proceedings of the IEEE International Conference on Computer Vision, 2015, 1026- 1034. | 
																													
																						|  | He T ,  Lu Y ,  Jiao L , et al.  Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 2020a, 74 (12): 1123- 1133. | 
																													
																						|  | He T ,  Macro J ,  Soares R , et al.  Machine learning models with quantitative wood anatomy data can discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests, 2020b, 11 (1): 36. | 
																													
																						|  | Hinton G E, Srivastava N, Krizhevsky A, et al. 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv: 1207. 0580. | 
																													
																						|  | Iandola F, Moskewicz M, Karayev S, et al. 2014. DenseNet: implementing efficient ConvNet descriptor pyramids. arXiv: 1404. 1869. | 
																													
																						|  | Jiao L ,  Yu M ,  Wiedenhoeft A C , et al.  DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Scientific Reports, 2018, 8, 1945. | 
																													
																						|  | Kanayama H ,  Ma T ,  Tsuchikawa S , et al.  Cognitive spectroscopy for wood species identification: near infrared hyperspectral imaging combined with convolutional neural networks. Analyst, 2019, 144, 6438- 6446. | 
																													
																						|  | Krizhevsky A ,  Sutskever I ,  Hinton G E .  ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 1097- 1105. | 
																													
																						|  | LeCun Y ,  Bengio Y ,  Hinton G .  Deep learning. Nature, 2015, 521, 436- 444. | 
																													
																						|  | Lewis S L ,  Edwards D P ,  Galbraith D .  Increasing human dominance of tropical forests. Science, 2015, 349, 827- 832. | 
																													
																						|  | Nair V ,  Hinton G E .  Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning, 2010, 807- 814. | 
																													
																						|  | Pan S J ,  Yang Q .  A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359. | 
																													
																						|  | Pennington J, Schoenholz S, Ganguli S. 2017. Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. Advances in Neural Information Processing Systems 30(NIPS 2017). | 
																													
																						|  | Ravindran P ,  Costa A ,  Soares R , et al.  Classification of CITES-listed and other neotropical meliaceae wood images using convolutional neural networks. Plant Methods, 2018, 14, 25. | 
																													
																						|  | Ravindran P, Ebanyenle E, Ebeheakey A A, et al. 2019. Image based identification of Ghanaian timbers using the XyloTron: opportunities, risks and challenges. arXiv: 1912. 00296. | 
																													
																						|  | Ravindran P ,  Wiedenhoeft A C .  Comparison of two forensic wood identification technologies for ten Meliaceae woods: computer vision versus mass spectrometry. Wood Science and Technology, 2020, 54, 1139- 1150. doi: 10.1007/s00226-020-01178-1
 | 
																													
																						|  | Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv: 1409. 1556. . | 
																													
																						|  | Wiedenhoeft A C ,  Simeone J ,  Smith A , et al.  Fraud and misrepresentation in retail forest products exceeds U. S. forensic wood science capacity. PLoS ONE, 2019, 14 (7): e0219917. | 
																													
																						|  | Zhang M ,  Zhao G ,  Guo J , et al.  A GC-MS protocol for separating endangered and non-endangered pterocarpus wood species. Molecules, 2019a, 24 (4): 799. | 
																													
																						|  | Zhang M ,  Zhao G ,  Liu B , et al.  Wood discrimination analyses of Pterocarpus tinctorius and endangered Pterocarpus santalinus using DART-FTICR-MS coupled with multivariate statistics. IAWA Journal, 2019b, 40 (1): 58- 74. |