 
		林业科学 ›› 2021, Vol. 57 ›› Issue (9): 160-167.doi: 10.11707/j.1001-7488.20210916
付宗营1,蔡英春2,周永东1,*
收稿日期:2020-04-03
									
				
									
				
									
				
											出版日期:2021-09-25
									
				
											发布日期:2021-11-29
									
			通讯作者:
					周永东
												基金资助:Zongying Fu1,Yingchun Cai2,Yongdong Zhou1,*
Received:2020-04-03
									
				
									
				
									
				
											Online:2021-09-25
									
				
											Published:2021-11-29
									
			Contact:
					Yongdong Zhou   
												摘要:
木材干燥应力相关研究是木材科学的重要组成部分,对木材实际加工过程具有重要指导作用,也是制定和优化干燥工艺的依据。本文从木材干燥应力研究的主要试验手段和模型方法2方面入手,对比分析各种方法的优势和不足,系统总结干燥应力研究现状,以期为木材干燥应力相关研究提供借鉴,推动干燥应力研究向更深层次发展,为木材高质量干燥奠定基础。试验研究方面,传统的叉齿法和切片法依旧是木材干燥应力、应变检测的常规试验方法,数字图像、近红外光谱等现代化技术手段为干燥应力、应变研究提供了新的契机,但至今仍没有一种方法具备绝对的检测精度和实际推广应用条件。模型研究方面,木材流变学理论模型日趋完善成熟,对干燥应力的模拟进入一个瓶颈阶段。随着计算机技术的不断发展以及数值分析软件的逐渐强大,有限元法被用于木材干燥应力的模拟研究,该方法在处理木材这种各向异性材料方面具有一定优势,目前处于快速发展阶段。根据现阶段木材干燥应力研究现状,试验手段和模型方法对于干燥应力研究均具有不可替代的作用,二者结合是全面研究干燥应力的关键,试验探寻能够快速、精准、连续检测木材干燥应力的新装置或新技术依然是未来的研究重点。有限元法是木材干燥应力模型研究最具潜力的数值分析方法,未来适用性广泛的模型构建要立足于木材自身的多尺度、多层级结构特征,利用先进仪器设备获取精准的模型参数,并将所建模型纳入干燥设备控制系统,指导和服务于实际生产。
中图分类号:
付宗营,蔡英春,周永东. 木材干燥应力研究现状与趋势[J]. 林业科学, 2021, 57(9): 160-167.
Zongying Fu,Yingchun Cai,Yongdong Zhou. Current Status and Prospects of Wood Drying Stresses Research[J]. Scientia Silvae Sinicae, 2021, 57(9): 160-167.
| 程万里, 刘一星, 齐华春, 等.  木材过热蒸汽干燥过程中的收缩应力Ⅰ: 径向收缩应力特征. 东北林业大学学报, 2004, 32 (6): 32- 34. doi: 10.3969/j.issn.1000-5382.2004.06.010 | |
| Cheng W L ,  Liu Y X ,  Qi H C , et al.  Shrinkage stress of wood during drying under superheated steam Ⅰ: the characteristics of radial shrinkage stress. Journal of Northeast Forestry University, 2004, 32 (6): 32- 34. doi: 10.3969/j.issn.1000-5382.2004.06.010 | |
| 程万里, 刘一星, 師岡敏朗, 等.  高温高压蒸汽干燥过程中木材的收缩应力特征. 北京林业大学学报, 2005, 27 (2): 101- 106. doi: 10.3321/j.issn:1000-1522.2005.02.020 | |
| Cheng W L ,  Liu Y X ,  Moroka T , et al.  Characteristics of shrinkage stress of wood during drying under high temperature and high pressure steam condition. Journal of Beijing Forestry University, 2005, 27 (2): 101- 106. doi: 10.3321/j.issn:1000-1522.2005.02.020 | |
| 付宗营, 赵景尧, 蔡英春.  树盘干缩异向性引起应变的测算及分析. 中国工程科学, 2014, 16 (4): 25- 29. doi: 10.3969/j.issn.1009-1742.2014.04.005 | |
| Fu Z Y ,  Zhao J Y ,  Cai Y C .  Investigation of tangential strain caused by shrinkage anisotropy using image analytical method. Strategic Study of CAE, 2014, 16 (4): 25- 29. doi: 10.3969/j.issn.1009-1742.2014.04.005 | |
| 付宗营. 2017. 常规干燥过程中白桦树盘干燥应力应变的研究. 哈尔滨: 东北林业大学博士学位论文. | |
| Fu Z Y. 2017. Study on drying stress and strain in white birch discs during conventional drying. Harbin: PhD thesis of Northeast Forestry University. [in Chinese] | |
| 付宗营, 蔡英春, 高鑫, 等. 基于人工神经网络模型的木材干燥应变模拟预测. 林业科学, 2020, 56 (6): 76- 82. | |
| Fu Z Y , Cai Y C , Gao X . Simulation of drying strain based on artificial neural network model. Scientia Silvae Sinicae, 2020, 56 (6): 76- 82. | |
| 高建民, 余雁, 刘志军.  木材干燥应力连续监测方法的研究. 木材工业, 2004, 18 (3): 1- 3, 13. doi: 10.3969/j.issn.1001-8654.2004.03.001 | |
| Gao J M ,  Yu Y ,  Liu Z J .  Method for continuously monitoring wood drying stresses. China Wood Industry, 2004, 18 (3): 1- 3, 13. doi: 10.3969/j.issn.1001-8654.2004.03.001 | |
| 蒋佳荔, 吕建雄.  木材干燥应力的研究方法与进展. 木材工业, 2005, 19 (2): 4- 7, 16. doi: 10.3969/j.issn.1001-8654.2005.02.002 | |
| Jiang J L ,  Lü J X .  Review of research methods for wood drying stresses. China Wood Industry, 2005, 19 (2): 4- 7, 16. doi: 10.3969/j.issn.1001-8654.2005.02.002 | |
| 李大纲. 国内外木材干燥应力研究现状及发展趋势. 建筑人造板, 2001, (2): 15- 19. | |
| Li D G . The research present situation and developments of drying stress of wood in and out of China. Building Artificial Boards, 2001, (2): 15- 19. | |
| 涂登云, 顾炼百, 杜国兴, 等.  干燥过程中马尾松板材干燥应变的研究. 南京林业大学学报: 自然科学版, 2004, 28 (4): 23- 28. doi: 10.3969/j.issn.1000-2006.2004.04.005 | |
| Tu D Y ,  Gu L B ,  Du G X , et al.  A study on drying strain of Pinus massoniana lumber during drying. Journal of Nanjing Forestry University: Natural Sciences Edition, 2004, 28 (4): 23- 28. doi: 10.3969/j.issn.1000-2006.2004.04.005 | |
| 涂登云, 刘彬.  木材干燥应力模型的研究. 南京林业大学学报: 自然科学版, 2009, 33 (3): 87- 91. doi: 10.3969/j.issn.1000-2006.2009.03.020 | |
| Tu D Y ,  Liu B .  Study on drying stress model of wood. Journal of Nanjing Forestry University: Natural Sciences Edition, 2009, 33 (3): 87- 91. doi: 10.3969/j.issn.1000-2006.2009.03.020 | |
| 涂登云. 2005. 马尾松板材干燥应力模型及应变连续测量的研究. 南京: 南京林业大学博士学位论文. | |
| Tu D Y. 2005. Study on drying stress model and continuous measurement of drying strain of Pinus massoniana board. Nanjing: PhD thesis of Nanjing Forestry University. [in Chinese] | |
| 余雁, 高建民, 周景斌, 等.  木材干燥应力应变研究现状及展望. 人造板通讯, 2002, (5): 7- 10. doi: 10.3969/j.issn.1673-5064.2002.05.002 | |
| Yu Y ,  Gao J M ,  Zhou J B , et al.  A review of research on wood drying stress and strain. China Wood-Based Panels, 2002, (5): 7- 10. doi: 10.3969/j.issn.1673-5064.2002.05.002 | |
| 战剑锋, 顾继友, 艾沐野.  白桦木材干燥过程横纹流变特性的初步研究. 林业科学, 2004, 40 (5): 174- 179. doi: 10.3321/j.issn:1001-7488.2004.05.029 | |
| Zhan J F ,  Gu J Y ,  Ai M Y .  The preliminary study on drying process traverse strains of Asian white birch. Scientia Silvae Sinicae, 2004, 40 (5): 174- 179. doi: 10.3321/j.issn:1001-7488.2004.05.029 | |
| 战剑锋, 顾继友, 艾沐野.  白桦干燥过程的横纹干燥应力. 东北林业大学学报, 2005, 33 (4): 25- 28. doi: 10.3969/j.issn.1000-5382.2005.04.010 | |
| Zhan J F ,  Gu J Y ,  Ai M Y .  Traverse drying stress of white birch wood during drying. Journal of Northeast Forestry University, 2005, 33 (4): 25- 28. doi: 10.3969/j.issn.1000-5382.2005.04.010 | |
| Allegretti O , Bagolini A , Margesin B , et al. A sensor to measure wood stress during the drying process. Proceedings of the 9th IUFRO International Wood Drying Conference, Nanjing, China, 2005, 161- 165. | |
| Allegretti O ,  Ferrari S .  A sensor for direct measurement of internal stress in wood during drying: experimental tests toward industrial application. Drying Technology, 2008, 26 (9): 1150- 1154. doi: 10.1080/07373930802266256 | |
| Allegretti O , Scanzoni R , Bagolini A , et al. In situ measurement of wood stress during drying process. Sensors and Microsystems, 2004, 565- 571. | |
| Booker J D . Acoustic emission related to instantaneous strain in Tasmanian eucalypt timber during seasoning. Wood Science and Technology, 1994, 28 (4): 249- 259. | |
| Chen G ,  Keey R B ,  Walker J C F .  The drying stress and check development on high-temperature kiln seasoning of sapwood Pinus radiata boards. Part Ⅰ: moisture movement and strain model. Holz als Roh-und Werkstoff, 1997a, 55, 59- 64. doi: 10.1007/BF02990517 | |
| Chen G ,  Keey R B ,  Walker J C F .  The drying stress and check development on high-temperature kiln seasoning of sapwood Pinus radiata boards. Part Ⅱ: stress development. Holz als Roh-und Werkstoff, 1997b, 55, 169- 173. doi: 10.1007/BF02990539 | |
| Diawanich P ,  Matan N ,  Kyokong B .  Evolution of internal stress during drying, cooling and conditioning of rubberwood lumber. European Journal of Wood and Wood Products, 2010, 68 (1): 1- 12. doi: 10.1007/s00107-009-0343-z | |
| Diawanich P , Tomad S , Matan N , et al. Novel assessment of casehardening in kiln-dried lumber. Wood Science and Technology, 2012, 46 (1/3): 101- 114. | |
| Ferrari S , Pearson H , Allegretti O , et al. Measurement of internal stress in radiata pine sapwood during drying using an improved online sensor. Holzforschung, 2010, 64 (6): 781- 789. | |
| Fu Z ,  Avramidis S ,  Zhao J , et al.  Artificial neural network modeling for predicting elastic strain of white birch disks during drying. European Journal of Wood and Wood Products, 2017, 75 (6): 949- 955. doi: 10.1007/s00107-017-1183-x | |
| Fu Z , Avramidis S , Zhao J , et al. Effects of saturated vapor pre-steaming on drying strain in Asian white birch: experimentation and modelling. Maderas Ciencia y Tecnología, 2019, 21 (1): 77- 88. | |
| Han Y ,  Park Y ,  Park J H , et al.  The shrinkage properties of red pine wood assessed by image analysis and near-infrared spectroscopy. Drying Technology, 2016, 34 (13): 1613- 1620. doi: 10.1080/07373937.2016.1138964 | |
| Han Y ,  Yang S Y ,  Park J H. , et al.  Separation of drying strains and the calculation of drying stresses considering the viscoelasticity of red pine wood during drying. Drying Technology, 2017, 35 (15): 1858- 1866. doi: 10.1080/07373937.2017.1283323 | |
| Kang H Y ,  Muszyński L ,  Milota M R .  Optical measurement of deformations in drying lumber. Drying Technology, 2011a, 29 (2): 127- 134. doi: 10.1080/07373937.2010.482725 | |
| Kang H Y ,  Muszyński L ,  Milota M , et al.  Preliminary tests for optically measuring drying strains and check formation in wood. Journal of the Faculty of Agriculture Kyushu University, 2011b, 56 (2): 313- 316. doi: 10.5109/20326 | |
| Kang W , Lee N H , Jung H S . Simple analytical methods to predict one-and two-dimensional drying stresses and deformations in lumber. Wood Science and Technology, 2004, 38 (6): 417- 428. | |
| Kang W ,  Lee N H .  Mathematical modeling to predict drying deformation and stress due to the differential shrinkage within a tree disk. Wood Science and Technology, 2002, 36 (6): 463- 476. doi: 10.1007/s00226-002-0153-5 | |
| Kifetew G . Application of the deformation field measurement method to wood during drying. Wood Science and Technology, 1996, 30 (6): 455- 462. | |
| Kowalski S J ,  Musielak G .  Deformations and stresses in dried wood. Transport in Porous Media, 1999, 34, 239- 248. doi: 10.1023/A:1006573727751 | |
| Kowalski S J ,  Moliński W ,  Musielak G .  The identification of fracture in dried wood based on theoretical modelling and acoustic emission. Wood Science and Technology, 2004a, 38 (1): 35- 52. doi: 10.1007/s00226-003-0211-7 | |
| Kowalski S J , Smoczkiewicz-Wojciechowska A . Identification of wood destruction during drying. Maderas Ciencia y Tecnología, 2004b, 6 (2): 133- 143. | |
| Kowalski S J , Smoczkiewicz-Wojciechowska A . Stresses in dried wood. Modelling and experimental identification. Transport in Porous Media, 2007, 66 (1/2): 145- 158. | |
| Kwon O. 2005. Analysis of multilateral internal deformation in wood utilizing the enhanced digital image correlation technique. Syracuse, State University of New York College of Environmental Science and Forestry. | |
| Langrish T A G .  Comparing continuous and cyclic drying schedules for processing hardwood timber: the importance of mechanosorptive strain. Drying Technology, 2013, 31 (10): 1091- 1098. doi: 10.1080/07373937.2013.769449 | |
| Larsen F ,  Ormarsson S .  Numerical and experimental study of moisture-induced stress and strain field developments in timber logs. Wood Science and Technology, 2013, 47 (4): 837- 852. doi: 10.1007/s00226-013-0541-z | |
| Larsen F ,  Ormarsson S .  Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs. Holzforschung, 2014, 68 (1): 133- 140. doi: 10.1515/hf-2012-0149 | |
| Lazarescu C. 2009. Wood shrinkage response to tensile stresses in convective drying. Vancouver, University of British Columbia. | |
| Lee S H , Quarles S L , Schniewind A P . Wood fracture, acoustic emission, and the drying process Part 2. Acoustic emission pattern recognition analysis. Wood Science and Technology, 1996, 30 (4): 283- 292. | |
| Mallet J ,  Kalyanasundaram S ,  Evans P .  Digital image correlation of strains at profiled wood surfaces exposed to wetting and drying. Journal of Imaging, 2018, 4 (2): 38. doi: 10.3390/jimaging4020038 | |
| Mårtensson A ,  Svensson S .  Stress-strain relationship of drying wood. Part 1: development of a constitutive model. Holzforschung, 1997a, 51 (5): 472- 478. doi: 10.1515/hfsg.1997.51.5.472 | |
| Mårtensson A ,  Svensson S .  Stress-strain relationship of drying wood. Part 2: verification of a one-dimensional model and development of a two-dimensional model. Holzforschung, 1997b, 51 (6): 565- 570. doi: 10.1515/hfsg.1997.51.6.565 | |
| McMillen J M . Drying stresses in red oak. Forest Product Journal, 1955, 5 (1): 71- 76. | |
| Moutee M , Fafard M , Fortin Y , et al. Modeling the creep behavior of wood cantilever loaded at free end during drying. Wood and Fiber Science, 2007a, 37 (3): 521- 534. | |
| Moutee M ,  Fortin Y ,  Fafard M .  A global rheological model of wood cantilever as applied to wood drying. Wood Science and Technology, 2007b, 41 (3): 209. doi: 10.1007/s00226-006-0106-5 | |
| Omarsson S ,  Dahlblom O ,  Petersson H .  A numerical study of the shape stability of sawn timber subjected to moisture variation. Part 3: influence of annual ring orientation. Wood Science and Technology, 2000, 34, 207- 219. doi: 10.1007/s002260000042 | |
| Ormarsson S ,  Dahlblom O ,  Petersson H .  A numerical study of the shape stability of sawn timber subjected to moisture variation. Part 1: theory. Wood Science and Technology, 1998, 32 (5): 325- 334. doi: 10.1007/BF00702789 | |
| Ormarsson S ,  Dahlblom O ,  Petersson H .  A numerical study of the shape stability of sawn timber subjected to moisture variation. Part 2: simulation of drying board. Wood Science and Technology, 1999, 33 (5): 407- 423. doi: 10.1007/s002260050126 | |
| Pang S .  Modelling of stress development during drying and relief during steaming in Pinus radiata lumber. Drying Technology, 2000, 18 (8): 1677- 1696. doi: 10.1080/07373930008917806 | |
| Pang S . Investigation of effects of wood variability and rheological properties on lumber drying: application of mathematical models. Chemical Engineering Journal, 2002, 86 (1/2): 103- 110. | |
| Peng M K ,  Chui Y H ,  Ho Y C , et al.  Investigation of shrinkage in softwood using digital image correlation method. Applied Mechanics and Materials, 2011, 83, 157- 161. doi: 10.4028/www.scientific.net/AMM.83.157 | |
| Peng M ,  Ho Y C ,  Wang W C , et al.  Measurement of wood shrinkage in jack pine using three dimensional digital image correlation(DIC). Holzforschung, 2012, 66, 639- 643. doi: 10.1515/hf-2011-0124 | |
| Peralta P N , Bangi A P . Grid-based tactile sensor system for shrinkage pressure measurement. Wood and Fiber Science, 2000, 32 (1): 52- 60. | |
| Pérez-Peña N , Chávez C , Salinas C , et al. Simulation of drying stresses in Eucalyptus nitens wood. BioResources, 2018, 13 (1): 1413- 1424. | |
| Perré P ,  Passard J .  A control-volume procedure compared with the finite-element method for calculating stress and strain during wood drying. Drying Technology, 1995, 13 (3): 635- 660. doi: 10.1080/07373939508916978 | |
| Perré P , Passard J . A physical and mechanical model able to predict the stress field in wood over a wide range of drying conditions. Drying Technology, 2004, 22 (1/2): 27- 44. | |
| Rémond R ,  Passard J ,  Perré P .  The effect of temperature and moisture content on the mechanical behaviour of wood: a comprehensive model applied to drying and bending. European Journal of Mechanics-A/Solids, 2007, 26 (3): 558- 572. doi: 10.1016/j.euromechsol.2006.09.008 | |
| Rice R W ,  Youngs R L .  The mechanism and development of creep during drying of red oak. Holz als Roh-und Werkstoff, 1990, 48 (2): 73- 79. doi: 10.1007/BF02610711 | |
| Salinas C H , Chavez C A , Gatica Y , et al. Simulation of wood drying stresses using CVFEM. Latin American Applied Research, 2011a, 41 (1): 23. | |
| Salinas C , Chavez C , Gatica Y , et al. Two-dimensional wood drying stress simulation using control control-volume mixed finite element methods(CVFEM). Ingeniería e Investigación, 2011b, 31 (1): 171- 183. | |
| Salinas C ,  Chavez C ,  Ananias R A , et al.  Unidimensional simulation of drying stress in radiata pine wood. Drying Technology, 2015, 33 (8): 996- 1005. doi: 10.1080/07373937.2015.1012767 | |
| Schniewind A P , Quarles S L , Lee S H . Wood fracture, acoustic emission, and the drying process Part 1. Acoustic emission associated with fracture. Wood Science and Technology, 1996, 30 (4): 273- 281. | |
| Svensson S , Martensson A . Simulation of drying stresses in wood Part I. Comparison between one-and two-dimensional models. Holz als Roh-und Werkstoff, 1999, 57 (2): 129- 136. | |
| Svensson S ,  Martensson A .  Simulation of drying stresses in wood Part Ⅱ. Convective air drying of sawn timber. Holz als Roh-und Werkstoff, 2002, 60 (1): 72- 80. doi: 10.1007/s00107-001-0266-9 | |
| Tomad S ,  Matan N ,  Diawanich P , et al.  Internal stress measurement during drying of rubberwood lumber: effects of wet-bulb temperature in various drying strategies. Holzforschung, 2012, 66 (5): 645- 654. doi: 10.1515/hf-2011-0183 | |
| Tu D Y ,  Gu L B ,  Liu B , et al.  Modeling and on-line measurement of drying stress of Pinus massoniana board. Drying Technology, 2007, 25 (3): 441- 448. doi: 10.1080/07373930601183827 | |
| Watanabe K , Kobayashi I , Saito S , et al. Nondestructive evaluation of drying stress level on wood surface using near-infrared spectroscopy. Wood science and Technology, 2013, 47 (2): 299- 315. | |
| Wu Q , Milota M R . Effect of creep and mechano-sorptive effect on stress development during drying. Drying Technology, 1994, 12 (8): 2057- 2085. | 
| [1] | 高鑫, 周凡, 庄寿增, 周永东. 纤维饱和点概念的演变、测试方法及其应用[J]. 林业科学, 2019, 55(3): 149-159. | 
| [2] | 马尔妮, 王望, 李想, 杨甜甜. 基于LFNMR的木材干燥过程中水分状态变化[J]. 林业科学, 2017, 53(6): 111-117. | 
| [3] | 董晓璐, 孙耀星, 杜洪双, 赵雪, 蒋涛. 辊压预处理条件对蒙古栎干燥速率及纹孔结构的影响[J]. 林业科学, 2015, 51(1): 103-111. | 
| [4] | 张明辉, 李新宇, 周云洁, 高玉磊. 利用时域核磁共振研究木材干燥过程水分状态变化[J]. 林业科学, 2014, 50(12): 109-113. | 
| [5] | 李贤军 蔡智勇 傅峰. 干燥过程中木材内部含水率检测的X射线扫描方法[J]. 林业科学, 2010, 46(2): 122-127. | 
| [6] | 何远伦 常建民. 基于Web技术的专家系统在木材干燥中的应用[J]. 林业科学, 2009, 12(7): 175-177. | 
| [7] | 龙玲 陆熙娴. 杉木干燥过程中的有机挥发物释放[J]. 林业科学, 2008, 44(1): 107-116. | 
| [8] | 战剑锋 顾继友 艾沐野. 白桦木材干燥过程横纹流变特性的初步研究[J]. 林业科学, 2004, 40(5): 174-179. | 
| [9] | 伊松林 张璧光 常建民. 木材真空-浮压干燥特性的试验研究[J]. 林业科学, 2004, 40(4): 139-144. | 
| [10] | 谢拥群 陈瑞英 杨庆贤 廖益强 张璧光. 木材干燥过程的热质迁移及其耦合关系[J]. 林业科学, 2004, 40(1): 148-153. | 
| [11] | 邵卓平 江泽慧 任海青. 线弹性断裂力学原理在木材中应用的特殊性与木材顺纹理断裂[J]. 林业科学, 2002, 38(6): 110-115. | 
| [12] | 杨文斌 张显权 刘金福. 应用层次分析法选择木材干燥窑[J]. 林业科学, 2002, 38(2): 169-172. | 
| [13] | 刘晓光,高克祥. 生长模型预测法在杨树细菌溃疡病流行预测中的应用*[J]. 林业科学, 1998, 34(4): 123-128. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||