林业科学 ›› 2022, Vol. 58 ›› Issue (12): 32-41.doi: 10.11707/j.1001-7488.20221204
孟畅1,彭洋2,赵杨1,*,王秀荣1,肖枫1
收稿日期:2021-08-05
出版日期:2022-12-25
发布日期:2023-03-11
通讯作者:
赵杨
Chang Meng1,Yang Peng2,Yang Zhao1,*,Xiurong Wang1,Feng Xiao1
Received:2021-08-05
Online:2022-12-25
Published:2023-03-11
Contact:
Yang Zhao
摘要:
目的: 明确2种叶型膏桐叶片形态结构和光合特性差异,探讨皱叶膏桐高产原因,为膏桐遗传改良与高效栽培提供参考。方法: 观测膏桐和皱叶膏桐的叶形态、解剖结构、光谱反射特性、叶绿素荧光特性以及光合参数日变化,探究不同叶形态膏桐幼苗的光合作用能力差异。结果: 1) 除叶柄长度外,皱叶膏桐的叶长、叶宽及叶面积均显著低于膏桐。2) 皱叶膏桐的叶绿素a、叶绿素b和总叶绿素含量均显著高于膏桐,2种膏桐叶片中的可溶性糖含量无显著差异。3) 皱叶膏桐的叶肉细胞体积显著小于膏桐,并且两者排列方式不同。4) 在绿光波段和近红外光波段,皱叶膏桐叶片的反射率明显低于膏桐。5) 光系统Ⅱ(PSⅡ)反应中心最大光化学效率Fv/Fm和潜在化学效率Fv/F0,均无显著差异;皱叶膏桐PS Ⅱ反应中心参数Y(Ⅱ)和Fv′/Fm′均高于膏桐;2种膏桐的PSⅡ调节性能量耗散的电子产量Y(NPQ)和PSⅡ非调节性能量耗散的电子产量Y(NO)日变化趋势均一致,但皱叶膏桐的Y(NPQ)高于膏桐,Y(NO)低于膏桐,表明皱叶膏桐的光保护机制优于膏桐;在8:00—14:00时段内,皱叶膏桐的净光合速率参数Pn、气孔导度参数Gs以及蒸腾速率参数Tr均高于膏桐;在14:00—18:00时段内,膏桐的光合参数均呈下降趋势,皱叶膏桐则有不同程度的回升。结论: 与膏桐相比,皱叶膏桐叶片面积较小,叶绿素含量较高,对光的截留、吸收以及光能转化的能力均较强;在高强光条件下,皱叶膏桐的光损害调节能力更强,具有更强的光合作用能力,即皱叶膏桐的形态结构更利于植物进行光合作用。
中图分类号:
孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性[J]. 林业科学, 2022, 58(12): 32-41.
Chang Meng,Yang Peng,Yang Zhao,Xiurong Wang,Feng Xiao. Morphological Structure and Photosynthetic Characteristics of Jatropha nigroviensrugosus cv. Yang and Jatropha curcas Seedlings with Different Leaf Types[J]. Scientia Silvae Sinicae, 2022, 58(12): 32-41.
表2
2种叶型的叶解剖结构指标比较(均值±标准差)②"
| 叶片结构 Leaf Structure | 皱叶叶型Jn Wrinkled leaf | 正常叶叶型Jc Normal leaf |
| 叶厚Leaf thickness/μm | 196.38±16.71b | 234.82±18.14a |
| 栅栏组织厚Palisade tissue thicknes/μm | 47.76±6.49b | 86.01± 8.96a |
| 海绵组织厚Sponge tissue thicknes/μm | 117.98±13.82b | 105.26±12.39a |
| 上表皮细胞长Upper epidermal cell length/μm | 28.27±7.11b | 33.93±8.51a |
| 上表皮细胞厚Upper epidermal cell weight/μm | 15.7±4.06b | 25.26±4.38a |
| 第一层栅栏组织细胞长The first layer of palisade tissue cells length/μm | 44.08±4.80b | 61.93±4.91a |
| 第一层栅栏组织细胞厚The first layer of palisade tissue cells weight/μm | 6.37±3.10b | 7.57±1.27a |
| 下表皮细胞长Lower epidermis cell length/μm | 21.80±5.70b | 25.63±6.51a |
| 下表皮细胞厚Lower epidermis cell weight/μm | 11.09±2.16b | 16.67±3.16a |
| 栅栏组织厚度/海绵组织厚度Palisade tissue /spongy tissue(P/S) | 0.411±0.08b | 0.830±0.14a |
| 叶片组织细胞结构紧密度Cell tense ratio (%) | 24.49±3.86b | 36.83±4.65a |
| 叶片组织细胞结构疏松度Spongy ratio (%) | 60.34±7.37a | 45.07±6.21b |
表4
2种叶型的叶绿素荧光参数(均值±标准差)"
| 项目 Item | 皱叶叶型Jn Wrinkled leaf | 正常叶Jc Normal leaf |
| F0 | 285.56±21.28a | 308.44±22.45b |
| Fm | 1 402.33 ±157.68a | 1 571.22±130.17b |
| Fv/Fm | 0.80±0.01a | 0.80±0.01a |
| Fv/Fo | 3.90±0.32a | 4.10±0.30a |
| 初始斜率α | 0.11±0.01a | 0.09±0.01b |
| 光抑制参数β | 0.00±0.00a | -0.01±0.00a |
| 最大电子传递速率 ETRmax/(μmol·m-2s-1) | 27.72±5.45a | 23.48±5.33a |
| 半饱和光强 Ik/(μmol·m-2s-1) | 247.35±39.10a | 256.84±57.02a |
| 陈孝丑, 杨芮, 户帅雅, 等. 红蓝复合光对'阳光红心'红掌生长和叶绿素荧光反应的影响. 热带作物学报, 2018, 39 (2): 224- 230. | |
| Chen X C , Yang R , Hu S Y , et al. Effects of blue and red light-emitting diodeon the growth and chlorophyll fluorescence reaction of Anthurium andraeanum 'Yongonred'. Journal of Tropical Crops, 2018, 39 (2): 224- 230. | |
| 郭文文, 卓么草, 方江平, 等. 藏东南色季拉山薄毛海绵杜鹃叶解剖结构特征与环境适应性. 西北植物学报, 2020, 40 (5): 811- 818. | |
| Guo W W , Zhuo M C , Fang J P , et al. Anatomical characteristics and environmental adaptability of Rhododendron aganniphum var. chizopeplun leaf in Sejila Mountain, southeast Tibet. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40 (5): 811- 818. | |
| 姜泽东, 张敖, 孙红蕾, 等. 金叶榆两种不同颜色叶片夏季叶绿素荧光参数比较研究. 沈阳农业大学学报, 2017, 48 (2): 174- 181. | |
| Jiang Z D , Zhang A , Sun H L , et al. Comparative study on chlorophyll fluorescence parameters between two leaves with different colors from Ulmus pumila cv. jinye in summer. Journal of Shenyang Agricultural University, 2017, 48 (2): 174- 181. | |
| 苏佳露, 史无双, 杨雅运, 等. 6个竹种叶色与光合色素含量及叶片结构比较. 林业科学, 2020, 56 (7): 194- 203. | |
| Su J L , Shi W S , Yang Y Y , et al. Comparison of leaf color, photosynthetic pigment content and leaf structure of six bamboo species. Scientia Silvae Sinicae, 2020, 56 (7): 194- 203. | |
| 苏芸芸, 王康才, 李丽. 5个不同产地藿香叶片解剖结构与光合特性比较研究. 西北植物学报, 2016, 36 (1): 78- 84. | |
| Su Y Y , Wang K C , Li L . Study on leaf anatomical structure and photosynthetic characteristics of Agastache rugosa from different areas. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36 (1): 78- 84. | |
| 王好运, 吴峰, 朱小坤, 等. 叶型对马尾松幼苗生长及叶绿素荧光特征的影响. 林业科学, 2019, 55 (3): 183- 192. | |
| Wang H Y , Wu F , Zhu X K , et al. Effects of leaf types on growth and chlorophyll fluorescence characteristics in Pinus massoniana seedlings. Scientia Silvae Sinicae, 2019, 55 (3): 183- 192. | |
| 王洁, 陈柯伊, 金海, 等. 不同叶色矢竹叶片反射光谱及光化学特性. 浙江农林大学学报, 2021, 38 (2): 271- 279. | |
| Wang J , Chen K Y , Jin H , et al. Reflectance spectrum and photochemical properties of different leaf colors' leaves in Pseudosasa japonica. Journal of Zhejiang A & F University, 2021, 38 (2): 271- 279. | |
| 杨成源. 2013. 膏桐新变种的表型特征和遗传稳定性//生态文明建设中的植物学. 中国植物学会第十五届会员代表大会暨八十周年学术年会论文集, 48. | |
| Yang C Y. 2013. Phenotypic characteristics and genetic stability of new varieties of Jatropha curcus//Botany in the Construction of Ecological Civilization. Proceedings of the 15th Member Representative Conference and the 80th Anniversary Academic Annual Conference of Chinese Botanical Society, 48. [in Chinese] | |
| 张桐, 洪秀玲, 孙立炜, 等. 6种植物叶片的滞尘能力与其叶面结构的关系. 北京林业大学学报, 2017, 39 (6): 70- 77. | |
| Zhang T , Hong X L , Sun L W , et al. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis. Journal of Beijing Forestry University, 2017, 39 (6): 70- 77. | |
| 张宪政. 植物叶绿素含量测定--丙酮乙醇混合液法. 辽宁农业科学, 1986, (3): 26- 28. | |
| Zhang X Z . Determination of plant chlorophyll content - acetone ethanol mixture method. Liaoning Agricultural Sciences, 1986, (3): 26- 28. | |
|
Baker D N , Myhre D L . Effects of leaf shape and boundary layer thickness on photosynthesis in cotton (Gossypium hirsutum). Physiologia Plantarum, 1969, 22 (5): 1043- 1049.
doi: 10.1111/j.1399-3054.1969.tb07463.x |
|
|
De Souza A P , Massenburg L N , Jaiswal D , et al. Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytologist, 2017, 213 (1): 50- 65.
doi: 10.1111/nph.14250 |
|
|
Fan Y , Chen J , Wang Z , et al. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology, 2019, 19 (1): 1- 12.
doi: 10.1186/s12870-018-1600-2 |
|
|
Fröschle M , Horn H , Spring O . Effects of the cytokinins 6-benzyladenine and forchlorfenuron on fruit-, seed-and yield parameters according to developmental stages of flowers of the biofuel plant Jatropha curcas L. (Euphorbiaceae). Plant Growth Regulation, 2017, 81 (2): 293- 303.
doi: 10.1007/s10725-016-0206-7 |
|
| Hallik L , Niinemets V , Kull O . Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigmnt content and chlorophyll fluorescence characteristics measured in the field. Plant Biology, 2012, 14 (1): 88- 99. | |
|
Hao L , Guo L , Li R , et al. Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 2019, 246, 251- 264.
doi: 10.1016/j.scienta.2018.11.007 |
|
|
Jassby A D , Platt T . Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 1976, 21 (4): 540- 547.
doi: 10.4319/lo.1976.21.4.0540 |
|
|
Kumar R , Silva L . Light ray tracing through a leaf cross section. Applied Optics, 1973, 12 (12): 2950- 2954.
doi: 10.1364/AO.12.002950 |
|
| Kumar S , Chaitanya B S , Ghatty S , et al. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. Physiologia Plantarum, 2014, 152 (3): 501- 519. | |
| Lin H H , Lin K H , Jiang J Y , et al. Comparisons between yellow and green leaves of sweet potato cultivars in chlorophyll fluorescence during various temperature regimes under high light intensities. Scientia Horticulturae, 2021, 288, 110335. | |
| Liu C , Guo J , Cui Y , et al. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant and Soil, 2011, 344 (1): 131- 141. | |
| Liu J , Li H J , Guo Y Y , et al. Responses of photosynthetic electron transport to drought and re-watering in two maize genotypes. Russian Journal of plant physiology, 2020, 67 (5): 912- 922. | |
| Mauri R , Cardoso A A , da Silva M M , et al. Leaf hydraulic properties are decoupled from leaf area across coffee species. Trees, 2020, 34 (6): 1507- 1514. | |
| Nietsche S , Vendrame W A , Crane J H , et al. Assessment of reproductive characteristics of Jatropha curcas L. in south Florida. Gcb Bioenergy, 2014, 6 (4): 351- 359. | |
| Niinemets V , Al Afas N , Cescatti A , et al. Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 2004, 24 (2): 141- 154. | |
| Ohashi S , Kurita H , Takahashi Y , et al. Varietal difference of soybean plant type focus on petiole. Plant Production Science, 2021, 24 (1): 103- 108. | |
| Ouyang L , Zhao P , Rao X , et al. Interpreting the water use strategies of plantation tree species by canopy stomatal conductance and its sensitivity to vapor pressure deficit in South China. Forest Ecology and Management, 2022, 505, 119940. | |
| Penuelas J , Gamon J A , Griffin K L , et al. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment, 1993, 46 (2): 110- 118. | |
| Platt T , Gallegos C L , Harrison W G . Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 1980, 38, 105- 111. | |
| Press M C . The functional significance of leaf structure: a search for generalizations. The New Phytologist, 1999, 143 (1): 213- 219. | |
| Saravi H B , Gholami A , Pirdashti H , et al. The Response of Stevia (Stevia rebaudiana Bertoni) photosystem II photochemistry to fungi symbiosis and spermidine application under saline water irrigation. Russian Agricultural Sciences, 2021, 47 (1): 32- 36. | |
| Seesangboon A , Gruneck L , Pokawattana T , et al. Transcriptome analysis of Jatropha curcas L. flower buds responded to the paclobutrazol treatment. Plant Physiology and Biochemistry, 2018, 127, 276- 286. | |
| Sello S , Meneghesso A , Alboresi A , et al. Plant biodiversity and regulation of photosynthesis in the natural environment. Planta, 2019, 249 (4): 1217- 1228. | |
| Terashima I , Hanba Y T , Tazoe Y , et al. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany, 2006, 57 (2): 343- 354. | |
| Terashima I , Hanba Y T , Tholen D , et al. Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 2011, 155 (1): 108- 116. | |
| Wang Y , Tong Y , Chu H , et al. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. Biologia, 2017, 72 (7): 735- 744. | |
| Woolley J T . Reflectance and transmittance of light by leaves. Plant Physiology, 1971, 47 (5): 656- 662. | |
| Zhou Z , Su P , Wu X , et al. Leaf and canopy photosynthesis of four desert plants: considering different photosynthetic organs. Photosynthesis Research, 2021, 151 (3): 265- 277. | |
| Zhu Z , Cao H , Li X , et al. A Carbon Fixation Enhanced Chlamydomonas reinhardtii strain for achieving the double-win between growth and biofuel production under non-stressed conditions. Frontiers in Bioengineering and Biotechnology, 2021, 8, 603513. |
| [1] | 马雅莉,郭素娟,廖逸宁,王芳芳. 板栗不同冠层球苞负载量对光合特性及果实品质的影响[J]. 林业科学, 2022, 58(9): 90-97. |
| [2] | 尚佳州,高钿惠,王卫锋,周新军,宗毓铮. 连续2年氮添加对中金杨幼苗叶光合特性与碳氮分配的影响[J]. 林业科学, 2022, 58(6): 23-32. |
| [3] | 张梦娇,史帅营,刘政安,朱学玲,范昆,史国安. 间伐对'凤丹’牡丹生长、籽粒产量及品质的影响[J]. 林业科学, 2022, 58(1): 162-174. |
| [4] | 徐瑞晶,胡璇,刘广路,郭雯,梁昌强,孔祥河. 海南岛热带低地雨林2种攀缘竹的叶片功能性状差异[J]. 林业科学, 2021, 57(12): 155-166. |
| [5] | 房丽莎,徐自恒,刘震,李志,耿晓东,蔡齐飞,翟雯婧,周海清,王艳梅. 山桐子果实发育过程中内含物、内源激素及光合特性的变化[J]. 林业科学, 2020, 56(11): 41-52. |
| [6] | 刘春洋, 史田, 史国安, 杨林菲, 范学峰, 高双成, 张改娜. 不同移栽时期对‘凤丹’牡丹植株生长效应及其综合评价[J]. 林业科学, 2019, 55(8): 54-62. |
| [7] | 夏国威, 孙晓梅, 陈东升, 张守攻. 日本落叶松冠层光合特性的空间变化[J]. 林业科学, 2019, 55(6): 13-21. |
| [8] | 王怡霖, 王卫锋, 张芸香, 常淑君, 郭晋平. 碧玉杨叶形态结构与生理特性对干旱的响应[J]. 林业科学, 2019, 55(4): 42-50. |
| [9] | 陈凌艳,谢德金,荣俊冬,赖金莉,林雪玲,郑郁善. 光合色素含量差异对花叶唐竹不同叶色表型光合特性的影响[J]. 林业科学, 2019, 55(12): 21-31. |
| [10] | 张韵,刘涛,张涛,谢乐添,黄坚钦,王正加,胡渊渊. 薄壳山核桃果实假果皮的光合特性[J]. 林业科学, 2019, 55(10): 10-18. |
| [11] | 黄亚丽,张军,樊英利,刘易超,杨敏生. 遮荫对中华金叶榆和鑫叶栾叶片呈色及相关生理指标的影响[J]. 林业科学, 2019, 55(10): 171-180. |
| [12] | 种培芳, 詹瑾, 贾向阳, 李毅. 模拟CO2浓度升高及降雨变化对荒漠灌木红砂光合及生长的影响[J]. 林业科学, 2018, 54(9): 27-37. |
| [13] | 张江涛, 杨淑红, 朱镝, 朱延林, 刘友全. 美洲黑杨2025及其2个芽变品种苗对持续干旱的生理响应及抗旱性评价[J]. 林业科学, 2018, 54(6): 33-43. |
| [14] | 周艳威, 陈金慧, 鲁路, 成铁龙, 杨立明, 施季森. 杂交鹅掌楸体胚再生植株淹水胁迫下叶片超微结构及光合特性变化[J]. 林业科学, 2018, 54(3): 19-28. |
| [15] | 史文辉, 李国雷, 苏淑钗, 刘勇, 贾黎明, 尚治国. 子叶切除与苗圃施肥对栓皮栎容器苗造林效果的影响[J]. 林业科学, 2018, 54(1): 64-73. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||