Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 61-73.doi: 10.11707/j.1001-7488.LYKX20240577
• Research papers • Previous Articles Next Articles
Peng Zhuang1,2,Jingen Peng2,Sijia Liu2,Yuqing Bai3,Luwen Zhang1,2,Rongsheng Li1,Jinchang Yang1,Lijuan Xie2,Hongyue Cai2,*()
Received:
2024-10-01
Online:
2025-05-20
Published:
2025-05-24
Contact:
Hongyue Cai
E-mail:caihongyue@szpu.edu.cn
CLC Number:
Peng Zhuang,Jingen Peng,Sijia Liu,Yuqing Bai,Luwen Zhang,Rongsheng Li,Jinchang Yang,Lijuan Xie,Hongyue Cai. Differences in Root Endophytic Fungal Diversity of Rhododendron moulmainense with Different Growth Potentials[J]. Scientia Silvae Sinicae, 2025, 61(5): 61-73.
Table 2
Statistical summary of sequencing results for root associated fungi in Rhododendron moulmainense with different growth potential"
生长势 Growth potential | 样株序号 Sample plant No. | 原始序列条数 Raw sequence reads | 过滤后序列条数 Clean sequence reads | 有效序列条数 Effective sequence reads | 序列平均长度 Sequence average length/bp | 有效序列占比 Proportion of effective sequence reads(%) |
好 Good | g1 | 64 687 | 64 687 | 62 252 | 627 | 96.24 |
g2 | 61 223 | 61 222 | 60 618 | 681 | 99.01 | |
g3 | 61 809 | 61 805 | 61 072 | 613 | 98.81 | |
小计 Subtotal | 187 719 | 187 714 | 183 942 | — | — | |
差 Poor | p4 | 57 260 | 57 259 | 56 478 | 671 | 98.63 |
p5 | 68 177 | 68 177 | 67 950 | 611 | 99.67 | |
p6 | 66 634 | 66 634 | 66 490 | 618 | 99.78 | |
小计 Subtotal | 192 071 | 192 070 | 190 918 | — | — |
Table 3
Alpha diversity of root associated fungi in Rhododendron moulmainense with different growth potential"
生长势 Growth potential | 样株序号 Sample plant No. | 基于丰度的覆盖估计值 Abundance based coverage estimator | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香农指数 Shannon -Wiener index | 覆盖率 Coverage |
好 Good | g1 | 517.87 | 517.07 | 0.93 | 5.49 | 0.9 995 |
g2 | 296.81 | 289.14 | 0.91 | 5.51 | 0.9 998 | |
g3 | 439.65 | 418.00 | 0.98 | 6.96 | 0.9 996 | |
差 Poor | p4 | 351.81 | 355.00 | 0.77 | 4.58 | 0.9 999 |
p5 | 516.89 | 539.14 | 0.86 | 4.42 | 0.9 994 | |
p6 | 506.34 | 520.25 | 0.91 | 4.93 | 0.9 995 |
Table 4
Number of fungal species types in root associated fungi of Rhododendron moulmainense under different growth potential"
生长势 Growth potential | 样株序号 Sample plant No. | 操作分类单元 Operational taxonomic unit | 界 Kindom | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species |
好 Good | g1 | 498 | 1 | 11 | 30 | 67 | 125 | 197 | 231 |
g2 | 284 | 1 | 10 | 22 | 51 | 82 | 119 | 139 | |
g3 | 372 | 1 | 11 | 26 | 58 | 104 | 160 | 183 | |
小计 Subtotal | 778 | 1 | 11 | 30 | 67 | 125 | 197 | 231 | |
差 Poor | p4 | 348 | 1 | 10 | 27 | 53 | 96 | 141 | 164 |
p5 | 502 | 1 | 10 | 27 | 62 | 112 | 169 | 202 | |
p6 | 494 | 1 | 10 | 28 | 59 | 103 | 156 | 174 | |
小计 Subtotal | 1 009 | 1 | 10 | 28 | 62 | 112 | 169 | 202 | |
总计Total | 1 371 | 1 | 12 | 37 | 97 | 186 | 354 | 466 |
Table 5
Morphological characteristics of representative tissue isolated endophytic fungal strains"
菌株编号 Strain No. | 菌株正面颜色 Surface color of the strain | 菌株背面颜色 Reverse color of the strain | 菌株质地 Texture of the strain | 菌株直径 Colony diameter of the Strain/cm | 菌株形状 Colony morphology |
gf95 | 蜡黄色 Waxen yellow | 蜡黄色 Waxen yellow | 绒毛状Velvety | 2.3 | 圆、平铺致密、中央隆起 Circular, flat and densely compact with an umbonate center |
gf151 | 乳白色 Milky white | 橙黄色 Orange yellow | 绒毡状 Felt like or velvety | 1.9 | 近椭圆、中央隆起、平铺致密 Subelliptical, umbonate, and flat with a densely compact structure |
gf147 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 1.6 | 圆、平铺致密、中央隆起 Circular, flat and densely compact with an umbonate center |
gf130 | 乳白色、灰色 Milky white and gray | 乳白色、灰色 Milky white and gray | 绒毡状 Felt like or velvety | 2 | 近椭圆、平铺致密、边缘菌丝辐射状 Subelliptical, flat and densely compact with radiating hyphae at the margins |
gf114 | 乳白色、灰色 Milky white and gray | 乳白色、灰色 Milky white and gray | 绒毡状 Felt like or velvety | 2.4 | 近椭圆、平铺致密 Subelliptical, flat, and densely compact |
gf170 | 蓝色 Blue | 灰色 Gray | 绒毡状 Felt like or velvety | 2.4 1.5 | 近椭圆、平铺致密 Subelliptical, flat, and densely compact |
gf149 | 白色 White | 浅黄色 Light yellow | 绒毡状 Felt like or velvety | 1.9 | 近椭圆、平铺致密 Subelliptical, flat, and densely compact |
gf70 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 7.4 | 圆、平铺致密、边缘辐射状 Circular, flat and densely compact with radiating margins |
gf129 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 2 | 近椭圆、平铺致密、中间稍隆起 Subelliptical, flat and densely compact with a slightly raised center |
gf59 | 乳白色、灰色 Milky white and gray | 乳白色、灰色 Milky white and gray | 绒毡状 Felt like or velvety | 2.4 | 近椭圆、平铺致密、辐射状沟 Subelliptical, flat and densely compact with radiating grooves |
gf85 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 2.1 | 近椭圆、平铺致密、辐射状沟 Subelliptical, flat and densely compact with radiating grooves |
gf184 | 乳白色 Milky white | 乳白色 Milky white | 绒毡状 Felt like or velvety | 7.7 | 圆、平铺致密 Circular, flat, and densely compact |
pf135 | 白色、棕色 White and brown | 棕色 Brown | 绒毡状 Felt like or velvety | 7.5 | 圆、平铺致密 Circular, flat, and densely compact |
pf53 | 灰色 Gray | 灰色 Gray | 绒毡状 Felt like or velvety | 2.4 | 近圆、平铺致密 Subcircular, flat, and densely compact |
pf83 | 蓝色 Blue | 橙黄色 Orange yellow | 绒毡状 Felt like or velvety | 3.2 | 圆、平铺致密 Circular, flat, and densely compact |
pf153 | 乳白色 Milky white | 橙黄色 Orange yellow | 蜡质状Waxy | 5.1 | 近圆、平铺致密、边缘辐射状沟 Subcircular, flat and densely compact with radial grooves at the margins |
pf154 | 棕色 Brown | 棕色 Brown | 绒毡状 Felt like or velvety | 8.3 | 圆、平铺致密 Circular, flat, and densely compact |
pf220 | 乳白色、棕色 Milky white and brown | 棕色 Brown | 绒毡状 Felt like or velvety | 8.3 | 圆、平铺致密 Circular, flat, and densely compact |
Table 6
Blast results of rDNA ITS sequences for representative tissue isolated endophytic fungal strains"
菌株编号 Strains No. | 相似率 Similarity rate (%) | 相似菌株GenBank登录号 Similar strains GenBank accession number | GenBank中相似菌株 Similar strains in GenBank |
gf95 | 99.10 | OM729675.1 | Helotiales sp. |
gf151 | 98.09 | OP895772.1 | 粒毛盘菌Lachnum virgineum |
gf147 | 98.15 | MN148673.1 | 粒毛盘菌Lachnum virgineum |
gf130 | 99.81 | HM208721.1 | Oidiodendron sp. shylm110 |
gf114 | 100.00 | HM208723.1 | Oidiodendron sp. shylm125 |
gf170 | 99.65 | GU565147.1 | Penicillium sp. GZU-BCECYN62-5 |
gf149 | 98.19 | MN961135.1 | 欧石楠无柄盘菌Pezicula ericae |
gf70 | 98.58 | KY979197.1 | 欧石楠无柄盘菌Pezicula ericae |
gf129 | 99.25 | KU550121.1 | uncultured oidiodendron |
gf59 | 99.46 | HM208723.1 | Oidiodendron sp. shylm125 |
gf85 | 99.82 | HM208723.1 | Oidiodendron sp. shylm125 |
gf184 | 98.75 | KY979197.1 | 欧石楠无柄盘菌Pezicula ericae |
pf135 | 99.82 | OL354998.1 | Helotiales sp. |
pf53 | 98.31 | OP895772.1 | 粒毛盘菌Lachnum virgineum |
pf83 | 99.83 | JF439496.1 | Penicillium sp. F02 |
pf153 | 99.82 | OL354998.1 | Helotiales sp. |
pf154 | 99.64 | OL354998.1 | Helotiales sp. |
pf220 | 99.82 | OL354998.1 | Helotiales sp. |
谌端玉, 欧 静, 王丽娟, 等. 干旱胁迫对接种ERM真菌桃叶杜鹃幼苗叶绿素含量及荧光参数的影响. 南方农业学报, 2016, 47 (7): 1164- 1170.
doi: 10.3969/j:issn.2095-1191.2016.07.1164 |
|
Chen D Y, Ou J, Wang L J, et al. Effects of drought stress on chlorophyll content and fluorescence parameters of Rhododendron annae Franch. seedlings inoculated with ERM fungi. Journal of Southern Agriculture, 2016, 47 (7): 1164- 1170.
doi: 10.3969/j:issn.2095-1191.2016.07.1164 |
|
陈美琪, 王 兴, 黎俊彦, 等. 基于高通量测序和组织分离法的虎耳草内生真菌多样性分析及其抗氧化活性研究. 中草药, 2023, 54 (6): 1924- 1934.
doi: 10.7501/j.issn.0253-2670.2023.06.025 |
|
Chen M Q, Wang X, Li J Y, et al. Study of endophytic fungi diversity of Saxifraga stolonifera based on high-throughput sequencing method and tissue isolation method and their antioxidant activities. Chinese Traditional and Herbal Drugs, 2023, 54 (6): 1924- 1934.
doi: 10.7501/j.issn.0253-2670.2023.06.025 |
|
付亚娟, 张江丽, 侯晓强. 大花杓兰根际与非根际土壤真菌多样性的高通量测序分析. 西北农业学报, 2019, 28 (2): 253- 259.
doi: 10.7606/j.issn.1004-1389.2019.02.013 |
|
Fu Y J, Zhang J L, Hou X Q. Comparative analysis of fungi diversity in rizospheric and non rhizospheric soil from Cypripedium macranthum estimated via high throughput sequencing. Acta Agriculturae Boreali occidentalis Sinica, 2019, 28 (2): 253- 259.
doi: 10.7606/j.issn.1004-1389.2019.02.013 |
|
龚金玉, 彭金根, 谢利娟, 等. 深圳梧桐山不同树势毛棉杜鹃根际土壤微生物多样性分析. 林业科学, 2021, 57 (11): 190- 200.
doi: 10.11707/j.1001-7488.20211119 |
|
Gong J Y, Peng J G, Xie L J, et al. Microbial diversity in rhizosphere soil of Rhododendron moulmainense with different tree potential in Wutong mountain of Shenzhen. Scientia Silvae Sinicae, 2021, 57 (11): 190- 200.
doi: 10.11707/j.1001-7488.20211119 |
|
郭 超. 2023. 野生越橘菌根真菌分离鉴定及互作促生研究. 哈尔滨: 东北林业大学. | |
Guo C. 2023. Isolation and identification and interaction promotion of growth research of mycorrhizal fungi from wild lingonberry. Harbin: Northeast Forestry University. [in Chinese] | |
胡 蝶, 熊 琳, 薛雅文, 等. 基于传统培养法和高通量测序技术分析新疆红枣中真菌多样性. 食品安全质量检测学报, 2022, 13 (24): 8101- 8108.
doi: 10.3969/j.issn.2095-0381.2022.24.spaqzljcjs202224033 |
|
Hu D, Xiong L, Xue Y W, et al. Analysis of the fungal diversity in Ziziphus jujuba mill. from Xinjiang using traditional culture method and high-throughput sequencing. Journal of Food Safety & Quality, 2022, 13 (24): 8101- 8108.
doi: 10.3969/j.issn.2095-0381.2022.24.spaqzljcjs202224033 |
|
黄 滔, 廖菊阳, 唐 红. 毛棉杜鹃地理分布及其开发利用. 湖南环境生物职业技术学院学报, 2010, 16 (2): 1- 4. | |
Huang T, Liao J Y, Tang H. Geographical distribution and utilization of Rhododendron Moulmainense in China. Journal of Hunan Ecological Science, 2010, 16 (2): 1- 4. | |
孔 鑫, 王剑峰, 熊 涵 等. 杜鹃属植物育种、繁殖及逆境胁迫的研究进展. 分子植物育种, 2022, 20 (20): 6918- 6925. | |
Kong X, Wang J F, Xiong H, et al. Research progress on breeding, reproductin and adversity stress of species of Rhododendron. Molecular Plant Breeding, 2022, 20 (20): 6918- 6925. | |
李文华, 贾彩娟. 2012. 毛棉杜鹃繁殖研究. 吉林农业. 23(2): 164-165. | |
Li W H, Jia C J. 2012. Breeding of Rhododendron moulmainense. Agriculture of Jilin. 23(2): 164-165. [in Chinese] | |
廖映辉, 黄彩微, 史佑海, 等. 海南霸王岭毛棉杜鹃根部真菌的多样性. 江苏农业科学, 2016, 44 (6): 432- 437. | |
Liao Y H, Huang C W, Shi Y H, et al. The diversity of fungal communities in the roots of Rhododendron moulmainense in Bawang ridge, Hainan. Jiangsu Agricultural Sciences, 2016, 44 (6): 432- 437. | |
刘永金, 徐 滔, 袁 银, 等. 接种福廷瓶头霉对毛棉杜鹃幼苗共生效应及其对加磷的响应. 安徽农业科学, 2015, 43 (34): 225- 228.
doi: 10.3969/j.issn.0517-6611.2015.34.084 |
|
Liu Y J, Xu T, Yuan Y, et al. Symbiotic effect and responses to adding phosphorus to Rhododendron moulmainense seedling after inoculated with phialocephala fortinii. Journal of Anhui Agricultural Sciences, 2015, 43 (34): 225- 228.
doi: 10.3969/j.issn.0517-6611.2015.34.084 |
|
刘 亚, 唐光大, 洪文君, 等. 深圳梧桐山毛棉杜鹃根内真菌的分离与鉴定. 安徽农业科学, 2015, 43 (29): 9- 12.
doi: 10.3969/j.issn.0517-6611.2015.29.004 |
|
Liu Y, Tang G D, Hong W J, et al. Isolation and identification of fungi from roots of Rhododendron moulmainense of Wutong mountain, Shenzhen. Journal of Anhui Agricultural Sciences, 2015, 43 (29): 9- 12.
doi: 10.3969/j.issn.0517-6611.2015.29.004 |
|
刘 亚, 王 盼, 周钰鸿, 等. 浙江大盘山华顶杜鹃菌根真菌的分离和鉴定. 浙江林业科技, 2019, 39 (1): 1- 8.
doi: 10.3969/j.issn.1001-3776.2019.01.001 |
|
Liu Y, Wang P, Zhou Y H, et al. Isolation and identification of mycorrhizal fungi in Rhododendron huadingense root in Zhejiang dapanshan national nature reserve. Journal of Zhejiang Forestry Science and Technology, 2019, 39 (1): 1- 8.
doi: 10.3969/j.issn.1001-3776.2019.01.001 |
|
刘振华. 2011. 杜鹃花菌根真菌分离鉴定及多样性分析. 北京: 中国林业科学研究院. | |
Liu Z H. 2011. Isolation identification and diversity anaiysis of rhododendron plants mycorrhizal fungi. Beijing: Chinese Academy of Forestry. [in Chinese] | |
毛光瑞, 翟梅枝, 史冠昭, 等. 陕西不同生境核桃内生真菌多样性. 微生物学通报, 2016, 43 (6): 1262- 1273. | |
Mao G R, Zhai M Z, Shi G Z, et al. Diversity of fungat endophytes from Juglans regia under different habitats in Shaanxi. Microbiology China, 2016, 43 (6): 1262- 1273. | |
欧 静, 刘仁阳, 张仁嫒, 等. 杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响. 浙江农林大学学报, 2014, 31 (6): 926- 931.
doi: 10.11833/j.issn.2095-0756.2014.06.015 |
|
Ou J, Liu R Y, Zhang R Y, et al. Nitrate reductase activity and n absorption of Rhododendron annae seedlings with ericoid mycorrhiza inoculation. Journal of Zhejiang A & F University, 2014, 31 (6): 926- 931.
doi: 10.11833/j.issn.2095-0756.2014.06.015 |
|
彭金根, 龚金玉, 范玉海, 等. 毛棉杜鹃根际与非根际土壤微生物群落多样性. 林业科学, 2022, 58 (2): 89- 99. | |
Peng J G, Gong J Y, Fan Y H, et al. Diversity of soil microbial communities in rhizosphere and non rhizosphere of Rhododendron moulmainense. Scientia Silvae Sinicae, 2022, 58 (2): 89- 99. | |
任 玮, 杨 韧, 张永新, 等. 中国中部太白山不同海拔杜鹃兰根部内生真菌多样性. 菌物学报, 2021, 40 (5): 992- 1007. | |
Ren W, Yang R, Zhang Y X, et al. Diversity of endophytic fungi in the roots of Cremastra appendiculata (Orchidaceae) at different altitudes in Taibaishan nature reserve, central China. Mycosystema, 2021, 40 (5): 992- 1007. | |
唐 燕, 李 敏, 马焕成, 等. 云南轿子山腋花杜鹃菌根多样性研究. 云南大学学报(自然科学版), 2019, 41 (5): 1062- 1072.
doi: 10.7540/j.ynu.20180844 |
|
Tang Y, Li M, Ma H C, et al. Mycorrhizal diversity of Rhododendron racemosum Franch. in Yunnan Jiaozi mountain. Journal of Yunnan University (Natural Sciences Edition), 2019, 41 (5): 1062- 1072.
doi: 10.7540/j.ynu.20180844 |
|
王 晔, 李 航, 汤 宇, 等. 浙江镜湖湿地3种菌根植物根部真菌群落多样性及对金属元素富集能力的研究. 植物研究, 2019, 39 (6): 883- 889.
doi: 10.7525/j.issn.1673-5102.2019.06.011 |
|
Wang Y, Li H, Tang Y, et al. Fungal community and their metal accumulation ability of three mycorrhizal plants in Jinghu wetland, Zhejing. Bulletin of Botanical Research, 2019, 39 (6): 883- 889.
doi: 10.7525/j.issn.1673-5102.2019.06.011 |
|
汪娅琴. 2021. 深色有隔内生真菌和菌根菌混合接种对蓝莓幼苗促生抗旱的影响. 贵阳: 贵州大学. | |
Wang Y Q. 2021. Effects of mixed inoculation of dark septate endophytes and mycorrhizal fungi on growth promotion and drought resistance of blueberry seedlings. Guiyang: Guizhou University. [in Chinese] | |
吴佳育. 2022. 杜鹃花类菌根真菌和深色有隔内生真菌分离及其相互作用初步研究. 哈尔滨: 东北林业大学. | |
Wu J Y. 2022. Preliminary study on the isolation of ericoid mycorrhizal fungi and dark septate endophytes and their interaction. Harbin: Northeast Forestry University. [in Chinese] | |
吴微微, 韩 雪, 王继朋, 等. 种植年限对枳壳根际微生物群落和土壤性质的影响. 土壤学报, 2024, 61 (6): 1729- 1740.
doi: 10.11766/trxb202308140224 |
|
Wu W W, Han X, Wang J P, et al. Alterations with plantation years of fructus aurantii on rhizosphere microbiome and soil properties. Acta Pedologica Sinica, 2024, 61 (6): 1729- 1740.
doi: 10.11766/trxb202308140224 |
|
夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价. 微生物学报, 2014, 54 (12): 1489- 1499. | |
Xia W W, Jia Z J. Comparative analysis of soil microbial communities by pyrosequencing and DGGE. Acta Microbiologica Sinica, 2014, 54 (12): 1489- 1499. | |
肖龙海. 2020. 5种菌根真菌对土壤微生物和酶活性以及蓝莓的影响效应研究. 贵阳: 贵州大学. | |
Xiao L H. 2020. Study on the effects of five mycorrhizal fungi on soil microorganism and enzyme activity and blueberry. Guiyang: Guizhou University. [in Chinese] | |
熊 涵. 2021. 不同海拔对马缨杜鹃土壤真菌、根际真菌和根内生真菌群落结构的影响. 贵阳: 贵州师范大学. | |
Xiong H. 2021. Effects of different altitudes on community structure of soil fungi, rhizosphere fungi and root endophytic fungi in Rhododendron delavayi Franch. Guiyang: Guizhou Normal University. [in Chinese] | |
许建新, 刘永金, 王定跃, 等. 2009. 深圳梧桐山风景区主要植物群落结构特征分析. 林业调查规划, 34(2): 29-36. | |
Xu J X, Liu Y J, Wang D Y, et al. 2009. Analysis on structural characteristics of major plant community of Wutong mountain in Shenzhen. Forest Inventory and Planning, 34(2): 29-36. [in Chinese] | |
徐胜男, 王 济, 张凌云, 等. 马缨杜鹃菌根真菌的种类组成. 贵州农业科学, 2014, 42 (6): 76- 79.
doi: 10.3969/j.issn.1001-3601.2014.06.019 |
|
Xu S N, Wang J, Zhang L Y, et al. Species composition of the mycorrhizal fungi of Rhododendron delavayi. Guizhou Agricultural Sciences, 2014, 42 (6): 76- 79.
doi: 10.3969/j.issn.1001-3601.2014.06.019 |
|
袁斓方. 2022. 贵州蓝莓菌根真菌多样性及其对蓝莓幼苗生长的影响. 贵阳: 贵州大学. | |
Yuan L F. 2022. Diversity of mycorrhizal fungi In GuiZhou Vaccinium and their impact on the growth of Vaccinium seedlings. Guiyang: Guizhou University. [in Chinese] | |
张艳华, 孙立夫. 杜鹃花科植物菌根的研究进展. 菌物学报, 2021, 40 (6): 1299- 1316. | |
Zhang Y H, Sun L F. Research advances on the mycorrhizas of ericaceae plants. Mycosystema, 2021, 40 (6): 1299- 1316. | |
Baba T, Hirose D, Noma S, et al. Inoculation with two Oidiodendron maius strains differentially alters the morphological characteristics of fibrous and pioneer roots of Vaccinium virgatum ‘Tifblue’ cuttings. Scientia Horticulturae, 2021, 281 (7): 109948. | |
Baird R, Wood-jones A, Varco J, et al. Rhododendron decline in the great smoky mountains and surrounding areas: intensive site study of biotic and abiotic parameters associated with the decline. Southeastern Naturalist, 2014, 13 (1): 1- 25.
doi: 10.1656/058.013.0101 |
|
Bougoure D S, Cairney J W G. Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture independent molecular methods. Environmental Microbiology, 2005, 7 (11): 1743- 1754.
doi: 10.1111/j.1462-2920.2005.00919.x |
|
Cai B B, Vancov T, Si H Q, et al. Isolation and characterization of endomycorrhizal fungi associated with growth promotion of blueberry plants. Journal of Fungi, 2021, 7 (8): 584.
doi: 10.3390/jof7080584 |
|
Cai L, Neilsen J, Dao Z L, et al. Rhododendron longipedicellatum (ericaceae), a new species from Southeastern Yunnan, China. Phytotaxa, 2016, 282 (4): 296- 300.
doi: 10.11646/phytotaxa.282.4.7 |
|
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods, 2013, 10 (10): 996.
doi: 10.1038/nmeth.2604 |
|
Fehrer J, Reblova M, Bambasova V, et al. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Studies in Mycology, 2019, 94 (3): 195- 225. | |
Hambleton S, Currah R S. Fungal endophytes from the roots of alpine and boreal ericaceae. Canadian Journal of Botany, 1997, 75 (9): 1570- 1581.
doi: 10.1139/b97-869 |
|
Li Y, Li Z, Arafat Y, et al. Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology, 2020, 70 (1): 1- 12.
doi: 10.1186/s13213-020-01552-1 |
|
Lin L C, Lin W R, Hsu Y C, et al. Influences of three Oidiodendron maius isolates and two inorganic nitrogen sources on the growth of Rhododendron kanehirae. Horticultural Science & Technology, 2020, 38 (5): 742- 753. | |
Midgley D J, Sutcliffe B, Greenfield P, et al. Gamarada debralockiae gen. nov sp nov. the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza, 2018, 28 (4): 379- 389.
doi: 10.1007/s00572-018-0835-y |
|
Mu D Y, Du N, Zwiazek J J. Inoculation with ericoid mycorrhizal associations alleviates drought stress in lowland and upland velvetleaf Blueberry (Vaccinium myrtilloides) seedlings. Plants-Basel, 2021, 10 (12): 2786.
doi: 10.3390/plants10122786 |
|
Myers M D, Leake J R. Phosphodiesters as mycorrhizal p sources: II. ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by vaccinium macrocarpon. The New Phytologist, 1996, 132 (3): 445- 451.
doi: 10.1111/j.1469-8137.1996.tb01864.x |
|
Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis. New Phytologist, 2018, 220 (4): 1141- 1147.
doi: 10.1111/nph.15218 |
|
Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil, 2002, 244 (1/2): 41- 53.
doi: 10.1023/A:1020289401610 |
|
Pescie M A, Montecchia M, Lavado R S, et al. Inoculation with Oidiodendron maius BP improves nitrogen absorption from fertilizer and growth of Vaccinium corymbosum during the early nursery stage. Plants-Basel, 2023, 12 (4): 792.
doi: 10.3390/plants12040792 |
|
Rungjindamai N, Jones E B G. Why are there so few basidiomycota and basal fungi as endophytes? a review. Journal of Fungi, 2024, 10 (1): 67.
doi: 10.3390/jof10010067 |
|
Sahu P K, Tilgam J, Mishra S, et al. Surface sterilization for isolation of endophytes: ensuring what (not) to grow. Journal of Basic Microbiology, 2022, 62 (6): 647- 668.
doi: 10.1002/jobm.202100462 |
|
Selosse M A, Setaro S, Glatard F, et al. Sebacinales are common mycorrhizal associates of ericaceae. New Phytologist, 2007, 174 (4): 864- 878.
doi: 10.1111/j.1469-8137.2007.02064.x |
|
Sieber T N. Endophytic fungi in forest trees: are they mutualists. Fungal Biology Reviews, 2007, 21 (2/3): 75- 89. | |
Su M, Hao Z, Shi H, et al. Metagenomic analysis revealed differences in composition and function between liquid-associated and solid associated microorganisms of sheep rumen. Front Microbiol, 2022, 13 (1): 1- 14. | |
Sun L, Pei K, Wang F, et al. Different distribution patterns between putative ercoid mycorrhizal and other fungal assemblages in roots of Rhododendron decorum in the Southwest of China. PLoS ONE, 2018, 7 (11): e49867. | |
Tian W, Zhang C Q, Qiao P, et al. Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan, China. Mycologia, 2011, 103 (4): 703- 709.
doi: 10.3852/10-296 |
|
Usuki F, Abe J P, Kakishima M. Diversity of ericoid mycorrhizal fungi isolated from hair roots of Rhododendron obtusum var. kaempferi in a Japanese red pine forest. Mycoscience, 2003, 44 (1): 0097- 0102. | |
Vohnik M. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza, 2020, 30 (6): 671- 695.
doi: 10.1007/s00572-020-00989-1 |
|
Vohnik M, Albrechtova J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six european rhododendron species. Folia Geobotanica, 2011, 46 (4): 373- 386.
doi: 10.1007/s12224-011-9098-5 |
|
Vohnik M, Panek M, Fehrer J, et al. Experimental evidence of ericoid mycorrhizal potential within serendipitaceae (sebacinales). Mycorrhiza, 2016, 26 (8): 831- 846.
doi: 10.1007/s00572-016-0717-0 |
|
Walker J F, Aldich-wolfe L, Riffel A, et al. Diverse Helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity. New Phytologist, 2011, 191 (2): 515- 527.
doi: 10.1111/j.1469-8137.2011.03703.x |
|
Wang J, Wang J, Wu S, et al. Global geographic diversity and distribution of the myxobacteria. Microbiology Spectrum, 2021, 9 (1): 1- 15. | |
Wei X, Chen J, Zhang C, et al. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth. Frontiers in Plant Science, 2016, 7 (1): 1594. | |
Wei X Y, Chen J J, Zhang C Y, et al. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Horticulture Research, 2020, 7 (1): 1- 11.
doi: 10.1038/s41438-019-0222-7 |
|
Zhang C, Yin L, Dai S. Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza, 2009, 19 (6): 417- 423.
doi: 10.1007/s00572-009-0246-1 |
|
Zheng H, Qiao M, Xu J, et al. Culture-based and culture-independent assessments of endophytic fungal diversity in aquatic plants in southwest China. Frontiers In Fungal Biology, 2021, 2 (1): 1- 18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||