Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (4): 9-19.doi: 10.11707/j.1001-7488.LYKX20240485
• Special subject: Smart forestry • Previous Articles Next Articles
Feifei Yang1(),Wangfei Zhang1,*(
),Lei Zhao2,Han Zhao1,Yongjie Ji3,Mengjin Wang1
Received:
2024-08-13
Online:
2025-04-25
Published:
2025-04-21
Contact:
Wangfei Zhang
E-mail:Taylor_YG@163.com;mewhff@163.com
CLC Number:
Feifei Yang,Wangfei Zhang,Lei Zhao,Han Zhao,Yongjie Ji,Mengjin Wang. Two-Stage Remote Sensing Feature Optimization and GF-1 Data-Supported Forest Above-Ground Biomass Inversion[J]. Scientia Silvae Sinicae, 2025, 61(4): 9-19.
Table 1
Vegetation index calculation equation"
植被指数 Vegetation index | 植被指数计算公式 Vegetation index calculation equation | 文献 References |
NDVI | ||
SR | ||
VARI | ||
DVI | ||
PVI | ||
SAVI | ||
EVI | ||
MSAVI |
Table 2
First-stage optimization parameters and estimation accuracy of GF-1"
模型 Model | 方法 Method | R2 | RMSE/ (t·hm?2) | rRMSE (%) | 特征 Feature |
KNN | Relief | 0.209 | 14.85 | 41.10 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 |
RF | 0.320 | 13.68 | 37.86 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、con_b4、NDVI、SR、EVI、b1、b2、b3、b4 | |
Lasso | 0.232 | 15.13 | 41.88 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 | |
SVR | Relief | 0.262 | 11.87 | 32.85 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 |
RF | 0.321 | 10.89 | 30.14 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、hom_b4、NDVI、SAVI、SR、 EVI、MSAVI、b1、b2、b3、b4 | |
Lasso | 0.386 | 9.82 | 27.18 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 | |
RF | Relief | 0.220 | 18.80 | 52.03 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 |
RF | 0.404 | 14.07 | 38.94 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 | |
Lasso | 0.267 | 15.50 | 42.90 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 | |
GBRT | Relief | 0.135 | 15.21 | 42.10 | mea_b1、mea_b2、cor_b2 、mea_b3、sec_b3、con_b4、NDVI、SR、 VARI、EVI、b1、b2、b3、b4 |
RF | 0.119 | 15.60 | 43.18 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、mea_b4、con_b4、NDVI、SR、EVI、b1、b2、b3 | |
Lasso | 0.132 | 15.23 | 42.15 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、con_b4、SR、VARI、EVI、 MSAVI、b1、b2、b3、b4 | |
XGBoost | Relief | 0.296 | 10.81 | 29.92 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 |
RF | 0.416 | 9.90 | 27.40 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 | |
Lasso | 0.444 | 9.90 | 27.40 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 |
Table 3
Two- stage feature optimization parameters and estimation accuracy of GF-1"
模型 Model | 一阶段方法 First-stage method | 二阶段方法 Two-stage method | R2 | RMSE/ (t·hm?2) | rRMSE (%) | 特征 Feature |
KNN | Relief | RFE | 0.474 | 11.59 | 32.08 | b3、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b4、mea_b2 |
RF | 0.384 | 10.87 | 30.01 | mea_b2、con_b4、EVI、b1、b3、b4 | ||
Lasso | 0.417 | 10.63 | 29.42 | con_b1、cor_b1、mea_b2、con_b3、mea_b4、con_b4、EVI、 b1、b2、b3、b4 | ||
SVR | Relief | 0.301 | 11.45 | 31.69 | b3、DVI、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b2 | |
RF | 0.473 | 9.10 | 25.19 | mea_b2、mea_b3、hom_b4、NDVI、EVI、b1、b4 | ||
Lasso | 0.493 | 10.84 | 30.00 | con_b1、cor_b1、mea_b2、con_b3、mea_b4、con_b4、 EVI、b1、b2、b3、b4 | ||
RF | Relief | 0.593 | 8.11 | 22.45 | b3、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b2、con_b1 | |
RF | 0.629 | 7.29 | 20.18 | b3、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b4、mea_b2 | ||
Lasso | 0.571 | 7.34 | 20.32 | b3、b2、b4、b1、PVI、con_b4、con_b3、mea_b3、mea_b2 | ||
GBRT | Relief | 0.658 | 11.51 | 31.86 | mea_b2、mea_b3、con_b4、NDVI、EVI、b1、b4 | |
RF | 0.651 | 7.54 | 20.87 | mea_b2、mea_b4、con_b4、SR、EVI、b1 | ||
Lasso | 0.591 | 9.12 | 25.24 | mea_b2、con_b4、EVI、MSAVI、b1、b3、b4 | ||
XGBoost | Relief | 0.811 | 8.45 | 23.39 | mea_b1、cor_b2、var_b3、con_b3、cor_b3、con_b4、 dis_b4、cor_b4、PVI、DVI、b1 | |
RF | 0.708 | 6.21 | 17.19 | con_b1、cor_b1、mea_b2、con_b3、con_b4、dis_b4、 EVI、b1、b2、b3、b4 | ||
Lasso | 0.781 | 6.21 | 17.19 | con_b1、cor_b1、mea_b2、con_b3、con_b4、dis_b4、 EVI、b1、b2、b3、b4 |
丁家祺, 黄文丽, 刘迎春, 等. 基于机器学习和多源数据的湘西北森林地上生物量估测. 林业科学, 2021, 57 (10): 36- 48. | |
Ding J Q, Huang W L, Liu Y C, et al. Estimation of forest aboveground biomass in northwest Hunan Province based on machine learning and multi-source data. Scientia Silvae Sinicae, 2021, 57 (10): 36- 48. | |
黄从德, 张 健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态. 生态学报, 2008, 28 (3): 966- 975.
doi: 10.3321/j.issn:1000-0933.2008.03.008 |
|
Huang C D, Zhang J, Yang W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City. Acta Ecologica Sinica, 2008, 28 (3): 966- 975.
doi: 10.3321/j.issn:1000-0933.2008.03.008 |
|
黄晓娟. 2018. 面向特征选择的Relief算法研究. 苏州: 苏州大学. | |
Huang X J. 2018. Research on relief algorithm for feature selection. Suzhou: Soochow University. [in Chinese] | |
菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演. 生态学报, 2021, 41 (6): 2161- 2169. | |
Jian Y F, Han Z M, Huang G T, et al. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests. Acta Ecologica Sinica, 2021, 41 (6): 2161- 2169. | |
吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型. 林业科学, 2024, 60 (2): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220526 |
|
Lü Z Q, Duan A G. Biomass and carbon storage model of Cunninghamia lanceolata in different production areas. Scientia Silvae Sinicae, 2024, 60 (2): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220526 |
|
蒙诗栎, 庞 勇, 张钟军, 等. WorldView-2纹理的森林地上生物量反演. 遥感学报, 2017, 21 (5): 812- 824. | |
Meng S (L /Y), Pang Y, Zhang Z J, et al. Estimation of aboveground biomass in a temperate forest using texture information from WorldView-2. National Remote Sensing Bulletin, 2017, 21 (5): 812- 824. | |
潘婧靓. 2020. 联合GF: 3 PolSAR数据和Landsat: 8 OLI数据的森林地上生物量估测方法研究. 哈尔滨: 东北林业大学. | |
Pan J L. 2020. Research on forest aboveground biomass estimation methods using combined GF-3 PoISAR data and Landsat-8 OLI data. Harbin: Northeast Forestry University. [in Chinese] | |
武小军, 周文心, 董永新. 一种改进的嵌入式特征选择算法及应用. 同济大学学报(自然科学版), 2022, 50 (2): 153- 159. | |
Wu X J, Zhou W X, Dong Y X. A novel embedded feature selection algorithm and its application. Journal of Tongji University (Natural Science), 2022, 50 (2): 153- 159. | |
于晓辉. 2019. 森林生物量遥感估测模型构建中的特征选择方法对比研究. 杭州: 浙江农林大学. | |
Yu X H. 2019. Comparative study of feature selection methods in the construction of remote sensing models for forest biomass estimation . Hangzhou: Zhejiang A&F University. [in Chinese] | |
张 志, 田 昕, 陈尔学, 等. 森林地上生物量估测方法研究综述. 北京林业大学学报, 2011, 33 (5): 144- 150. | |
Zhang Z, Tian X, Chen E X, et al. Review of methods on estimating forest above ground biomass. Journal of Beijing Forestry University, 2011, 33 (5): 144- 150. | |
周俊宏, 王子芝, 廖声熙, 等. 基于GF-1影像的普达措国家公园森林地上生物量遥感估算. 农业工程学报, 2021, 37 (4): 216- 223. | |
Zhou J H, Wang Z Z, Liao S X, et al. Remote sensing estimation of forest aboveground biomass in Potatso National Park using GF-1 images. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (4): 216- 223. | |
朱教君, 王高峰, 张怀清, 等. 关于“气候智慧林业” 研究的思考. 林业科学, 2024, 60 (7): 1- 7. | |
Zhu J J, Wang G F, Zhang H Q, et al. On the research of climate-smart forestry. Scientia Silvae Sinicae, 2024, 60 (7): 1- 7. | |
Afreixo V, Cabral J, Macedo P. 2023. Comparison of feature selection methods in regression modeling: a simulation study. Computational Science and Its Applications-ICCSA 2023 Workshops, 150−159. | |
Altman N. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992, 46, 175- 185.
doi: 10.1080/00031305.1992.10475879 |
|
Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature selection for high-dimensional data. Progress in Artificial Intelligence, 2016, 5, 65- 75. | |
Breiman L. Random forests. Machine Learning, 2001, 45, 5- 32.
doi: 10.1023/A:1010933404324 |
|
Brovkina O, Novotny J, Cienciala E, et al. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe. Ecological Engineering, 2017, 100, 219- 230.
doi: 10.1016/j.ecoleng.2016.12.004 |
|
Chen T Q, Guestrin C, Chen T Q, et al. 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 785−794. | |
Dong H, Xu X, Wang L, et al. Gaofen-3 PolSAR image classification via XGBoost and polarimetric spatial information. Sensors, 2018, 18 (2): 611.
doi: 10.3390/s18020611 |
|
Dube T, Mutanga O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 36- 46.
doi: 10.1016/j.isprsjprs.2014.11.001 |
|
Fassnacht F E, Hartig F, Latifi H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 2014, 154, 102- 114.
doi: 10.1016/j.rse.2014.07.028 |
|
Freeman E A, Moisen G G, Coulston J W, et al. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Canadian Journal of Forest Research, 2016, 46 (3): 323- 339.
doi: 10.1139/cjfr-2014-0562 |
|
Friedman J H. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450 |
|
Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80 (1): 76- 87. | |
Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3, 1157- 1182. | |
Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46 (1): 389- 422. | |
Huang H J, Wu D S, Fang L M, et al. Comparison of multiple machine learning models for estimating the forest growing stock in large-scale forests using multi-source data. Forests, 2022, 13 (9): 1471.
doi: 10.3390/f13091471 |
|
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83 (1/2): 195- 213. | |
Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25 (3): 295- 309.
doi: 10.1016/0034-4257(88)90106-X |
|
Jin Q W, Fan X T, Liu J, et al. Estimating tropical cyclone intensity in the South China Sea using the XGBoost model and FengYun satellite images. Atmosphere, 2020, 11 (4): 423.
doi: 10.3390/atmos11040423 |
|
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50 (4): 663- 666.
doi: 10.2307/1936256 |
|
Kira K, Rendell L A. 1992. A practical approach to feature selection. Machine Learning Proceedings 1992, Morgan Kaufmann, 249−256. | |
Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97 (1/2): 273- 324. | |
Konstantinavičienė J, Vitunskienė V. Definition and classification of potential of forest wood biomass in terms of sustainable development: a review. Sustainability, 2023, 15 (12): 9311.
doi: 10.3390/su15129311 |
|
Li X H. Using “random forest” for classification and regression. Chinese Journal of Applied Entomology, 2013, 50 (4): 1190- 1197. | |
Liu H, Setiono R. 1996. A probabilistic approach to feature selection — a filter solution. International Conference on Machine Learning, 1−9. | |
Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48 (2): 119- 126.
doi: 10.1016/0034-4257(94)90134-1 |
|
Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43 (12): 1541- 1552. | |
Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication, 1974, 351 (1): 309. | |
Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2011, 73 (3): 273- 282.
doi: 10.1111/j.1467-9868.2011.00771.x |
|
Vabalas A, Gowen E, Poliakoff E, et al. Machine learning algorithm validation with a limited sample size. PLoS One, 2019, 14 (11): e0224365.
doi: 10.1371/journal.pone.0224365 |
|
Verma R K, Sharma L K, Lele N. AVIRIS-NG hyperspectral data for biomass modeling: from ground plot selection to forest species recognition. Journal of Applied Remote Sensing, 2023, 17 (1): 014522- 014522. | |
Zhang H, Song T Q, Wang K L, et al. Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China. Ecological Engineering, 2014, 73, 184- 191.
doi: 10.1016/j.ecoleng.2014.09.008 |
|
Zhang Y L, Wang N, Wang Y L, et al. A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing. GIScience & Remote Sensing, 2023, 60 (1): 2163574. | |
Zhu T T. Analysis on the applicability of the random forest. Journal of Physics: Conference Series, 2020, 1607 (1): 012123.
doi: 10.1088/1742-6596/1607/1/012123 |
[1] | Xiaoning Ge,Xinqiao Xu,Huaiqing Zhang,Jing Zhang,Jie Yang,Zeyu Cui,Rurao Fu,Jinjie Liang,Tianhua Zou,Linlong Wang,Yang Liu. Progress and Reflection on Genotype-Environment Interaction Algorithms in Forest Tree Breeding [J]. Scientia Silvae Sinicae, 2025, 61(3): 1-15. |
[2] | Dan Pan,Luyi Luo,Kaiwen Ji,Fanbin Kong. Impact of Rural E-Commerce Development on Intra-Regional Income Gap and Shared Prosperity in Forested Areas [J]. Scientia Silvae Sinicae, 2024, 60(5): 35-50. |
[3] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[4] | Qiangying Jiao,Zongfu Han,Weiye Wang,Di Liu,Pengxu Pan,Bo Li,Nianci Zhang,Ping Wang,Jinhua Tao,Meng Fan. Driving Factors and Forecasting Model of Lightning-Caused Forest Fires in Daxing’ anling Mountains Based on Multi-Sources Data and Machine Learning Method [J]. Scientia Silvae Sinicae, 2023, 59(6): 74-87. |
[5] | Nannan Yang,Yan Bai,Suyi Jiang,Chunmei Yang,Kaihong Xu. Recognition Method of Plate and Wood Based on ALexNet Optimaization [J]. Scientia Silvae Sinicae, 2022, 58(3): 149-158. |
[6] | Feng Qi, Chen Erxue, Li Zengyuan, Li Lan, Zhao Lei. Forest Above-Ground Biomass Estimation Method for Rugged Terrain Based on Airborne P-Band PolSAR Data [J]. Scientia Silvae Sinicae, 2016, 52(3): 10-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||