Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (6): 60-70.doi: 10.11707/j.1001-7488.LYKX20230426
Previous Articles Next Articles
Mengjie Zheng1,2(),Wei Xie3,Xingcong Ma1,2,Jianqin Huang2,4,Liyuan Peng1,2,*,Hua Qin1,2
Received:
2023-09-13
Online:
2024-06-25
Published:
2024-07-16
Contact:
Liyuan Peng
E-mail:2021603042054@stu.zafu.edu.cn
CLC Number:
Mengjie Zheng,Wei Xie,Xingcong Ma,Jianqin Huang,Liyuan Peng,Hua Qin. Effects of Root Exudation from Carya cathayensis on the Growth and Phosphorus Activation Ability of Phosphorus-Mobilization Bacteria[J]. Scientia Silvae Sinicae, 2024, 60(6): 60-70.
Fig.1
NA Effect of different treatments on OD600 of phosphorus dissolving bacteria in NA medium 0+BI: without root exudation, but with bacterial inoculation; Low concentration+BI: with low concentration of root exudation and bacterial inoculation; Medium concentration+BI: with medium concentration of root exudation and bacterial inoculation; High concentration+BI: with high concentration of root exudation and bacterial inoculation;A:the inoculated bacteria was strain CQ18;B: the inoculated bacteria was strain QP22. Absorbance values were measured at 600 nm."
Fig.2
Number of phosphorus solubilizing bacteria in mehknha organic phosphorus culture medium under different treatments 0+BI: without root exudation, but with bacterial inoculation; Low concentration+BI: with low concentration of root exudation and bacterial inoculation; Medium concentration+BI: with medium concentration of root exudation and bacterial inoculation; High concentration+BI: with high concentration of root exudation and bacterial inoculation;A:the inoculated bacteria was strain CQ18;B:the inoculated bacteria was strain QP22. Absorbance values were measured at 600 nm."
Fig.3
Changes in soluble phosphorus content in different treatment culture media 0-BI: without root exudation or bacterial inoculation;0+BI: without root exudation, but with bacterialinoculation; Low concentration+BI: with low concentration of root exudation and bacterial inoculation; Medium concentration+BI: with medium concentration ofroot exudation and bacterial inoculation; High concentration+BI: with high concentration of root exudation and bacterial inoculation;A:the inoculated bacteria wasstrain CQ18;B:the inoculated bacteria was strain QP22, different minuscule indicate significant differences between treatments on the same day (P<0.05)."
Fig.4
Changes of phosphatase activity in different treatments 0-BI, without root exudation or bacterial inoculation;0+BI, without root exudation, but with bacterialinoculation; Low concentration+BI, with low concentration ofroot exudation and bacterial inoculation; Medium concentration+BI, with medium concentration ofroot exudation and bacterial inoculation; High concentration+BI, with high concentration of root exudation and bacterial inoculation; A?C:inoculation of strain CQ18;D?F:inoculation of strain QP22,different minuscule indicate significant differences between treatments on the same day (P<0.05)."
Fig.5
Colonization quantity of phosphorus solubilizing bacteria in different soil treatments 0+BI:without root exudation, but with bacterialinoculation; Low concentration+BI:with low concentration of root exudation and bacterial inoculation; Medium concentration+BI:with medium concentration ofroot exudation and bacterial inoculation; High concentration+BI:with high concentration of root exudation and bacterial inoculation; A:the inoculated bacteria wasstrain CQ18; B:the inoculated bacteria was strain QP22."
Fig.6
Changes of available phosphorus content in soil under different treatments 0+BI:without root exudation, but with bacterialinoculation; Low concentration+BI:with low concentration of root exudation and bacterial inoculation; Medium concentration+BI:with medium concentration ofroot exudation and bacterial inoculation; High concentration+BI:with high concentration of root exudation and bacterial inoculation; a:the inoculated bacteria wasstrain CQ18; b:the inoculated bacteria was strain QP22."
Fig.7
Changes of acid phosphatase activity in soils under different treatments 0+BI:without root exudation, but with bacterialinoculation; Low concentration+BI:with low concentration of root exudation and bacterial inoculation; Medium concentration+BI:with medium concentration ofroot exudation and bacterial inoculation; High concentration+BI:with high concentration of root exudation and bacterial inoculation; a:the inoculated bacteria wasstrain CQ18; b:the inoculated bacteria was strain QP22."
鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agriculture Press. [in Chinese] | |
陈丹梅. 2020. 产酶溶杆菌新株Lysobacter enzymogenes LE16的促生防病作用及机理. 重庆: 西南大学. | |
Cheng D M. 2020. Functions and mechanisms of the new Lysobacter enzymogenes strain LE16 in plant growth promoting and disease biocontrol. Chongqing: Southwest University. [in Chinese] | |
邓先智, 类延宝, 沈 杰, 等. 模拟根系分泌物输入对高寒退化草地土壤微生物残体的影响. 生态学报, 2022, 42 (20): 8311- 8321. | |
Deng X Z, Lei Y B, Shen J, et al. Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland. Acta Ecologica Sinica, 2022, 42 (20): 8311- 8321. | |
杜思垚, 方娅婷, 鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展. 华中农业大学学报, 2023, 42 (2): 147- 157. | |
Du S Y, Fang Y T, Lu J W. Progress on effects of root exudates on nutrient uptake and utilization of crops. Journal of Huazhong Agricultural University, 2023, 42 (2): 147- 157. | |
韩玲玲. 2021. 黄顶菊根系分泌物对芽孢杆菌功能的影响及其主效化感物质的鉴定. 保定: 河北大学. | |
Han L L. 2021. Effects of root exudates of Flaveria bidentis on the function of bacillus and identification of its main allelochemicals. Baoding: Hebei University. [in Chinese] | |
贾峥嵘, 郝佳丽, 郝艳芳, 等. 4种促生菌剂对甘薯生长及土壤肥力的影响. 干旱区资源与环境, 2022, 36 (9): 166- 172. | |
Jia Z R, Hao J L, Hao Y F, et al. Effects of four growth-promoting bacteria on the growth of sweet potato and soil fertility. Journal of Arid Land Resources and Environment, 2022, 36 (9): 166- 172. | |
李佳佳, 樊妙春, 上官周平. 植物根系分泌物主要生态功能研究进展. 植物学报, 2020, 55 (6): 788- 796.
doi: 10.11983/CBB20036 |
|
Li J J, Fan M C, Shanggaun Z P. Research advances in the main ecological functions of root exudates. Chinese Bulletin of Botany, 2020, 55 (6): 788- 796.
doi: 10.11983/CBB20036 |
|
刘 海, 王玉书, 焦玉洁, 等. 三种土壤条件下紫茎泽兰根际的酶活性及细菌群落状况. 生态学报, 2018, 38 (23): 8455- 8465. | |
Liu H, Wang Y S, Jiao Y J, et al. Enzyme activities and bacterial community in the rhizosphere of Eupatorium adenophorum under different soil conditions. Acta Ecologica Sinica, 2018, 38 (23): 8455- 8465. | |
刘耀辉, 盛可银, 罗建荣, 等. 溶磷菌混施对土壤微生物群落及毛竹生长的影响. 江西农业大学学报, 2023, 45 (2): 298- 310. | |
Liu Y H, Sheng K Y, Luo J R, et al. Effects of phosphorus solubilizing bacterial compound suspensions on growth of moso bamboo(Phyllostachys edulis)and soil microbial community structures. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45 (2): 298- 310. | |
刘志中, 陈汉章, 杨 娇. 不同浓度根系分泌物调控植物土壤微生物群落结构研究. 林业调查规划, 2022, 47 (6): 20- 25,30.
doi: 10.3969/j.issn.1671-3168.2022.06.005 |
|
Liu Z Z, Chen H Z, Yang J. Regulation of plant soil microbial community structure by different concentrations of root exudates. Forest Inventory and Planning, 2022, 47 (6): 20- 25,30.
doi: 10.3969/j.issn.1671-3168.2022.06.005 |
|
罗 兴, 冯海超, 夏丽明, 等. 根际促生解淀粉芽胞杆菌SQR9对香蕉根系分泌物响应的转录组分析. 南京农业大学学报, 2019, 42 (1): 102- 110.
doi: 10.7685/jnau.201804025 |
|
Luo X, Feng H C, Xia L M, et al. Transcriptomic profiling of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to banana root exudates. Journal of Nanjing Agricultural University, 2019, 42 (1): 102- 110.
doi: 10.7685/jnau.201804025 |
|
马 莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用. 微生物学报, 2023, 63 (12): 4502- 4521. | |
Ma Y, Cheng Y Y, Shi X J, et al. Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers. Acta Microbiologica Sinica, 2023, 63 (12): 4502- 4521. | |
宋雪萍. 2021. 撕裂蜡孔菌(Ceriporia lacerata HG2011)的溶磷促生作用研究. 重庆: 西南大学. | |
Song X P. 2021. Mobilization of soil phosphorus and promotion of plant growth by Ceriporia lacerata HG2011. Chongqing: Southwest University. [in Chinese] | |
陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展. 生态学报, 2023, 43 (11): 4390- 4399. | |
Tao D X, Gao Y Z. Advances on the strategies of soil phosphate solubilizing microorganisms to promote plant phosphorus uptake. Acta Ecologica Sinica, 2023, 43 (11): 4390- 4399. | |
王大欣, 张 丹, 初少华, 等. 巨大芽孢杆菌NCT-2冻干菌剂的制备及冻干保护剂响应面优化. 食品工业科技, 2016, 37 (11): 156- 160,164. | |
Wang D X, Zhang D, Chu S H, et al. Preparation of Bacillus megaterium NCT-2 freeze-dried agent by using response surface methodology. Science and Technology of Food Industry, 2016, 37 (11): 156- 160,164. | |
王玉书, 刘 海, 李 佳, 等. 黄连须根浸提液对无机磷细菌的负化感效应. 土壤学报, 2018, 55 (4): 977- 986.
doi: 10.11766/trxb201712250571 |
|
Wang Y S, Liu H, Li J, et al. Negative allelopathic effects of extract of Coptis chinensis hair root on inorganic phosphorus-dissolving bacteria. Acta Pedologica Sinica, 2018, 55 (4): 977- 986.
doi: 10.11766/trxb201712250571 |
|
王玉书, 刘 海, 袁 玲. 空心莲子草根系分泌物对无机磷细菌的负化感效应. 土壤学报, 2017, 54 (6): 1486- 1496.
doi: 10.11766/trxb201705180092 |
|
Wang Y S, Liu H, Yuan L. Negative allelopathic effects of root exudate of Alternanthera philoxeroides on growth and phosphate dissolution of inorganic phosphorus bacteria. Acta Pedologica Sinica, 2017, 54 (6): 1486- 1496.
doi: 10.11766/trxb201705180092 |
|
徐舰航, 钱思源, 王舒哲, 等. 低磷胁迫对薄壳山核桃幼苗生长发育的影响. 果树学报, 2022, 39 (8): 1432- 1442. | |
Xu J H, Qian S Y, Wang S Z, et al. Effects of low phosphorus stress on the growth and development in pecans(Carya illinoinensis). Journal of Fruit Science, 2022, 39 (8): 1432- 1442. | |
张 燕, 强 薇, 罗如熠, 等. 氮磷添加对土壤微生物生长、周转及碳利用效率的影响研究进展. 应用与环境生物学报, 2022, 28 (2): 526- 534. | |
Zhang Y, Qiang W, Luo R Y, et al. Effects of nitrogen and phosphorus addition on soil microbial growth, turnover, and carbon use efficiency: a review. Chinese Journal of Applied and Environmental Biology, 2022, 28 (2): 526- 534. | |
Babalola O O. Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Scientific Research and Essays, 2012, 7 (28): 2431- 2439. | |
Behera B C, Singdevsachan S K, Mishra R R, et al. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove: a review. Biocatalysis and Agricultural Biotechnology, 2014, 3 (2): 97- 110.
doi: 10.1016/j.bcab.2013.09.008 |
|
Catford J G, Staehelin C, Larose G, et al. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant and Soil, 2006, 285 (1): 257- 266. | |
Cui Y X, Bing H J, Fang L C, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019, 338, 118- 127.
doi: 10.1016/j.geoderma.2018.11.047 |
|
Efthymiou A, Jensen B, Jakobsen I. The roles of mycorrhiza and Penicillium inoculants in phosphorus uptake by biochar-amended wheat. Soil Biology and Biochemistry, 2018, 127, 168- 177.
doi: 10.1016/j.soilbio.2018.09.027 |
|
Fukami K, Kawai K, Takeuchi S, et al. Effect of water content on the glass transition temperature of calcium maltobionate and its application to the characterization of non-arrhenius viscosity behavior. Food Biophysics, 2016, 11 (4): 410- 416.
doi: 10.1007/s11483-016-9455-2 |
|
Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1 (6): 15051.
doi: 10.1038/nplants.2015.51 |
|
Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11 (1): 637.
doi: 10.1038/s41467-020-14492-w |
|
Khan A A, Jilani G, Akhtar M S, et al. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences, 2009, 1 (1): 48- 58. | |
Kour D, Rana K L, Kaur T, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review. Pedosphere, 2021, 31 (1): 43- 75.
doi: 10.1016/S1002-0160(20)60057-1 |
|
Ma Y H, Li L J, Tian H X, et al. Transcriptional analysis of the laccase-like gene from Burkholderia cepacia BNS and expression in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103 (2): 747- 760.
doi: 10.1007/s00253-018-9468-5 |
|
Menezes-Blackburn D, Giles C, Darch T, et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 2018, 427 (1): 5- 16. | |
Meier I C, Finzi A C, Phillips R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 2017, 106, 119- 128.
doi: 10.1016/j.soilbio.2016.12.004 |
|
Naher U A, Othman R, Shamsuddin Z H, et al. Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. International Journal of Agriculture and Biology, 2009, 11 (5): 586- 590. | |
Nannipieri P, Giagnoni L, Landi L, et al. Role of phosphatase enzymes in soil. Springer Berlin Heidelberg, 2011, 26, 215- 243. | |
Peng L Y, Huang J G, Huang C Y, et al. Genetic sequencing provides insights into molecular and genetic mechanisms of Lysobacter enzymogenes HYP18 involved in soil organic nitrogen and phosphorus mobilization and plant growth promotion. Plant and Soil, 2023, 491 (1): 525- 542. | |
Shrivastava M, Srivastava P C, Souza S F. 2018. Phosphate-solubilizing microbes: diversity and phosphates solubilization mechanism. Role of Rhizospheric Microbes in soil. Singapore: Springer. | |
Sinsabaugh R L, Hill B H, Follstad Shah J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462, 795- 798.
doi: 10.1038/nature08632 |
|
Strickland M S, McCulley R L, Nelson J A, et al. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities. Frontiers in Microbiology, 2015, 6, 817. | |
White P, Hammond J. 2008. The ecophysiology of plant-phosphorus interactions. Berlin, Germany: Springer Netherlands. | |
Yin H J, Li Y F, Xiao J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 2013, 19 (7): 2158- 2167.
doi: 10.1111/gcb.12161 |
|
Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6 (1): 156.
doi: 10.1186/s40168-018-0537-x |
|
Zhu H, Bing H J, Wu Y H, et al. 2021. Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau. Catena, 203: 1−10. |
[1] | Ming'ao Cao,Fei Zhang,Guangming Huang,Ruicheng Liu,Liping Liu,Qiangsheng Wu,Yongjie Xu. Effects of Arbuscular Mycorrhizal Fungi on Phosphorus Uptake of Walnut Seedling Roots under Low Phosphorus Stress and the Potential Mechanisms [J]. Scientia Silvae Sinicae, 2023, 59(12): 117-124. |
[2] | Jiaqi Chen,Guangyu Zhao,Yanglong Li,Yuhong Dong,Lingyu Hou,Ruzhen Jiao. Age Changes of Soil Phosphorus Form and Content in Chinese Fir Plantations [J]. Scientia Silvae Sinicae, 2022, 58(5): 10-17. |
[3] | Yan Wang,Jinling Feng,Xiaohui Wu,Lanming Huang,Juan Wu,Yu Chen,Zhijian Yang. Effects of Fertilization on Photosynthetic Carbon Fixation of Phoebe bournei Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(5): 40-52. |
[4] | Duang Dandan;Wang Younian;Cheng Jun;Zhao Jianing;Shi Guanglu. Effects of Inula britannica Extracts on Biological Activities against Tetranychus cinnabarinus and Several Enzyme Systems in T.cinnabarinus [J]. Scientia Silvae Sinicae, 2012, 48(4): 156-161. |
[5] | Geng Yuqing;Yu Xinxiao;Yue Yongjie;Niu Lili;. Variation of Forest Soil Nutrient Content in Mountainous Areas, Beijing [J]. Scientia Silvae Sinicae, 2010, 46(5): 169-175. |
[6] | Liang Jun;Wang Yuan;Jiao Yijie;Zhang Xingyao . Effects of Rhizosphere Microenvironment on the Root Vigor of Poplars and Transformation of Soil Available P [J]. Scientia Silvae Sinicae, 2009, 12(1): 102-106. |
[7] | Ji Xianling;Gai Yingping;Ma Jianping;Mu Zhimei. Cloning and Prokaryotic Expression of the Sedoheptulose-1,7-Bisphosphatase cDNA from Mulberry and Construction of Plant Expression Vector [J]. Scientia Silvae Sinicae, 2008, 44(3): 62-69. |
[8] | Chen Lixin;Yang Chengdong. The Succession of Various Types of Phosphorus, Phosphatase Activity, and the Relationship with the Tree Growth in Larch Plantations [J]. Scientia Silvae Sinicae, 2004, 40(3): 12-18. |
[9] | Ming Tang,Hui Chen,Hongsheng Shang. EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI(AMF) ON HIPPOPHAE RHAMNOIDES DROUGHT-RESISTANCE [J]. Scientia Silvae Sinicae, 1999, 35(3): 48-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||