Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (3): 147-157.doi: 10.11707/j.1001-7488.LYKX20230598
• Research papers • Previous Articles Next Articles
Yin Wang,Ruiling Yao*(),Yufei Xiao
Received:
2023-12-11
Online:
2025-03-25
Published:
2025-03-27
Contact:
Ruiling Yao
E-mail:jullyudi@163.com
CLC Number:
Yin Wang,Ruiling Yao,Yufei Xiao. Effects of PBZ/DPC Treatment on Rooting and GAs Metabolism of Pinus massoniana Cuttings[J]. Scientia Silvae Sinicae, 2025, 61(3): 147-157.
Table 1
Rooting effect of Pinus massoniana cuttings under different rooting agents"
生根剂 Rooting agent | 生根时间 Rooting time/d | 生根率 Rooting rate (%) | 根条数 Root number per plant | 成活率 Survival percentage (%) |
NAA | 45.2±1.5a | 58.6±3.3c | 1.9±0.4a | 52.3±3.6a |
NAA+PBZ | 30.5±2.3c | 79.5±2.8b | 2.0±0.5a | 56.3±4.1a |
NAA+DPC | 37.2±3.5b | 85.4±2.7a | 2.2±0.7a | 54.8±2.8a |
Fig.1
Changes of 16 kinds of GAs content in Pinus massoniana cuttings under different rooting agent treatments A: 16 kinds of GAs content; B: Content of GA3 and GA4. In Figure B, C is NAA treatment, D is NAA+DPC treatment, R is NAA+PBZ treatment; 1: Cutting rooting treatment 0 day; 2: Cutting rooting treatment for 10 days; 3: Cutting rooting treatment for 20 days; 4: Cutting rooting treatment for 35 days. The lowercase and uppercase letters represent the significant differences among different cutting time within a rooting agent and different rooting agents at the same cutting time, respectively (P<0.05)."
Fig.3
Anatomy of Pinus massoniana cuttings during the formation of adventitious roots under GA3/4 treatments A: NAA treatment; B: NAA+GA3 treatment; C: NAA+GA4 treatment; 1: cutting rooting treatment 0 day; 2: cutting rooting treatment for 10 days; 3: cutting rooting treatment for 20 days; 4: cutting rooting treatment for 35 days. The blue part represents parenchyma cell tissue, the purple part represents thick-walled lignified, low-activity cell tissue, and the arrow shows the induced root primordium. Scale bar=200 μm."
Fig.4
Micrograph of suberin in Pinus massoniana cuttings after 35 days of GA3/4 treatment A–C are images under oil lens, D–F are images under light lens, and G–H are images under electron microscope. A, D, and G:NAA treatment; B, E, and H:NAA+GA3 treatment; C, F, and I:NAA+GA4 treatment. S:Cork ; N: Nucleus. Scale bar = 20 μm."
Fig.5
Level of small molecule lignin in Pinus massoniana cuttings under GA3/4 treatment C was treated with NAA, G3 was treated with NAA+GA3, and G4 was treated with NAA+GA4. 1: Cutting rooting treatment 0 day; 2: Cutting rooting treatment for 10 days; 3: Cutting rooting treatment for 20 days; 4: Cutting rooting treatment for 35 days. cps: Count per second."
Fig.6
Content of caffeic acid, caffeyl alcohol and ferulic acid in Pinus massoniana cuttings under GA3/4 treatment The ordinate unit cps in the figure was the abbreviation of counts per second, indicating the number of small lignin molecules detected per second in the sample. C was treated with NAA, G3 was treated with NAA+GA3, and G4 was treated with NAA+GA4. Different lowercase letters indicate significant differences among different cutting time within a rooting agent treatment, and different uppercase letters indicate significant differences among different rooting agent treatments at the same cutting time, respectively (P<0.05)."
韩雪源, 茅林春. 木栓质组成成分、组织化学特性及其生物合成研究进展. 植物学报, 2017, 52 (3): 358- 374.
doi: 10.11983/CBB16068 |
|
Han X Y, Mao L C. Research progress on constituents, histochemical characteristics and biosynthesis of suberin. Chinese Bulletin of Botany, 2017, 52 (3): 358- 374.
doi: 10.11983/CBB16068 |
|
何波祥, 曾令海, 连辉明, 等. 高产脂马尾松扦插繁殖技术研究. 广东林业科技, 2004, (1): 16- 19. | |
He B X, Zeng L H, Lian H M, et al. A study on the cutting propagation of high gum Masson pine. Guangdong Forestry Science and Technology, 2004, (1): 16- 19. | |
季孔庶, 王章荣, 陈天华, 等. 马尾松扦插繁殖年龄效应及继代扦插复壮效果. 浙江林学院学报, 1999, 16 (4): 341- 345. | |
Ji K S, Wang Z R, Chen T H, et al. Cyclophysis and effect of rejuvenation with continued cuttage in Pinus massoniana cutting propagation. Journal of Zhejiang Forestry College, 1999, 16 (4): 341- 345. | |
林士杰, 王梓默, 朱红波, 等. 吲哚丁酸对紫椴嫩枝扦插生根及相关生理特性的影响. 森林工程, 2023, 39 (4): 68- 77.
doi: 10.3969/j.issn.1006-8023.2023.04.008 |
|
Lin S J, Wang Z M, Zhu H B, et al. Effects of IBA on rooting and physiological characteristics in softwood cutting of Tilia amurensis. Forest Engineering, 2023, 39 (4): 68- 77.
doi: 10.3969/j.issn.1006-8023.2023.04.008 |
|
刘 彬, 刘青华, 周志春, 等. 马尾松β-蒎烯合酶基因克隆以及对松材线虫侵染的响应. 林业科学研究, 2020, 33 (6): 1- 12. | |
Liu B, Liu Q H, Zhou Z C, et al. Cloning of β-pinene synthase gene in Pinus massoniana and its response to pine wood nematode infection. Forest Research, 2020, 33 (6): 1- 12. | |
王 丽. 2014. 赤霉素合成抑制剂调控棉花营养生长的分子机制研究. 北京: 中国农业大学. | |
Wang L. 2014. Molecular mechanism of vegetative growth control by a gibberellin biosynthesis inhibitor DPC in cotton (Gossypium hirsutum L.). Beijing: China Agricultural University. [in Chinese] | |
王 荣. 2016. 苹果砧木茎源根系发生中次生代谢、内源激素和转录组差异分析. 泰安: 山东农业大学. | |
Wang R. 2016. Secondary metabolism, endogenous hormone and transcriptome analysis of apple stock cutting root system. Taian: Shandong Agricultural University. [in Chinese] | |
王 胤, 姚瑞玲, 李慧娟, 等. 基于外植体生理复幼的马尾松茎段芽无菌离体培养. 植物生理学报, 2019, 55 (9): 1375- 1384. | |
Wang Y, Yao R L, Li H J, et al. In vitro sterilized culture of nodal segments based on explants physiological rejuvenation in Pinus massoniana. Plant Physiology Journal, 2019, 55 (9): 1375- 1384. | |
王 胤, 姚瑞玲. 继代培养中马尾松生根能力及其与内源激素含量的相关分析. 林业科学, 2020, 56 (8): 38- 46.
doi: 10.11707/j.1001-7488.20200805 |
|
Wang Y, Yao R L. Analysis for rooting capacity and the correlations between rooting capacity and endohormones levels during subculturing in Pinus massoniana. Scientia Silvae Sinicae, 2020, 56 (8): 38- 46.
doi: 10.11707/j.1001-7488.20200805 |
|
颜培栋, 李 鹏, 杨章旗, 等. 不同造林密度马尾松人工林分化特征及其对生产力的影响. 林业科学, 2023, 59 (10): 66- 75. | |
Yan P D, Li P, Yang Z Q, et al. Differentiation characteristics and their effects on productivity with different planting densities of Pinus massoniana plantations. Scientia Silvae Sinicae, 2023, 59 (10): 66- 75. | |
杨模华. 2012. 马尾松种质资源分子评价与体胚发育技术研究. 长沙: 中南林业科技大学. | |
Yang M H. 2012. Genetic structure and associations of Masson pine (Pinus massoniana Lamb. ) germplasm using molecular markers and somatic embryogenesis with immature zygotic embryos. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
杨章旗, 冯源恒, 谭健晖, 等. 广西马尾松高世代育种策略研究. 广西林业科学, 2018, 47 (3): 251- 256.
doi: 10.3969/j.issn.1006-1126.2018.03.001 |
|
Yang Z Q, Feng Y H, Tan J H, et al. Advanced generation breeding strategy of Pinus massoniana in Guangxi. Guangxi Forestry Science, 2018, 47 (3): 251- 256.
doi: 10.3969/j.issn.1006-1126.2018.03.001 |
|
姚瑞玲, 王 胤, 吴幼媚. 马尾松组培生根关键因子分析. 广西植物, 2016, 36 (11): 1288- 1294. | |
Yao R L, Wang Y, Wu Y M. Key factors affecting rooting of Pinus massoniana by tissue culture. Guihaia, 2016, 36 (11): 1288- 1294. | |
姚瑞玲, 王 胤. 2022. 一种提升高产脂马尾松优树继代芽生根稳定性的方法. 国家发明专利, ZL202010426414.6. 2022−11−15. | |
Yao R L, Wang Y. 2022. A method to improve the rooting stability of subculture buds of high-yield resin Masson pine plus trees. National Patent, ZL202010426414.6. 2022−11−15. [in Chinese] | |
张 旭, 王小佳, 黎思辰, 等. 柑橘果实粒化过程中木质素生物合成与调控研究进展. 浙江农业学报, 2019, 31 (12): 2131- 2140.
doi: 10.3969/j.issn.1004-1524.2019.12.22 |
|
Zhang X, Wang X J, Li S C, et al. Research progress of lignin biosynthesis and regulation during granulation of citrus. Acta Agriculturae Zhejiangensis, 2019, 31 (12): 2131- 2140.
doi: 10.3969/j.issn.1004-1524.2019.12.22 |
|
郑 璐. 2019. 多效唑和烯效唑与植物赤霉素合成酶的分子反应机制. 杭州: 浙江工业大学. | |
Zheng L. 2019. Molecular reaction mechanism of paclobutrazol and uniconazole with gibberellin synthetase in plant. Hangzhou: Zhejiang University of Technology. [in Chinese] | |
郑武林. 2014. 马尾松与落叶松高效离体再生体系建立. 南昌: 江西农业大学. | |
Zheng W L. 2014. Establishment of highly efficient in vitro regeneration system of masson pine and larch. Nancang: Jiangxi Agricultural University. [in Chinese] | |
Abdel-Mohsen M A-A, Rashedy A A. Stock plant etiolation reduces rooting of sub-terminal olive cuttings by reducing total sugars, IAA, indole/phenol ratio, and IAA/GA ratio. Acta Physiologiae Plantarum, 2023, 45 (9): 104.
doi: 10.1007/s11738-023-03582-z |
|
Alok K S, Manoj K S, Kureel R S, et al. Effects of IAA and GA3 on in vitro root regeneration in potato variety Kufri chipsona-1 and Kufri mohan. Biotech Today: an International Journal of Biological Sciences, 2017, 7 (2): 49- 51.
doi: 10.5958/2322-0996.2017.00021.7 |
|
Arpin R, LoBuono C, Rego M, et al. Thionin stain replacement of toluidine blue stain for cytological specimen triage improves safety during the COVID-19 pandemic. Journal of the American Society of Cytopathology, 2021, 10 (5): S73. | |
Camara M C, Vandenberghe L P S, Rodrigues C, et al. Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 2018, 248 (5): 1049- 1062.
doi: 10.1007/s00425-018-2959-x |
|
Cesarino I. With a little help from MYB friends: transcriptional network controlling root suberization and lignification. Plant Physiology, 2022, 190 (2): 1077- 1079.
doi: 10.1093/plphys/kiac318 |
|
Gargul J M, Mibus H, Serek M. Characterization of transgenic Kalanchoë and Petunia with organ-specific expression of GUS or GA2ox genes led by the deletion BOX-I version (dBI) of the PAL1 promoter. Journal of Plant Growth Regulation, 2017, 36 (2): 424- 435.
doi: 10.1007/s00344-016-9650-x |
|
Han H, Dye L, Mackie A. The impact of processing on the release and antioxidant capacity of ferulic acid from wheat: a systematic review. Food Research International, 2023, 164, 112371.
doi: 10.1016/j.foodres.2022.112371 |
|
Mauriat M, Petterle A, Bellini C, et al. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant Journal, 2014, 78 (3): 372- 384.
doi: 10.1111/tpj.12478 |
|
Mignolli F, Vidoz M L, Picciarelli P, et al. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. Physiologia Plantarum, 2018, 165 (4): 768- 779. | |
Pan T, Chen X L, Hao Y P, et al. Optimization of factors affecting the rooting of pine wilt disease resistant Masson pine (Pinus massoniana) stem cuttings. PLoS One, 2021, 16 (9): e0251937.
doi: 10.1371/journal.pone.0251937 |
|
Saini S, Sharma I, Kaur N, et al. Auxin: a master regulator in plant root development. Plant Cell Reports, 2013, 32 (6): 741- 757.
doi: 10.1007/s00299-013-1430-5 |
|
Su Y C, Li Y P, Tan C S, et al. Rapid identification of flaxseed oil based on portable fiber optic Raman spectroscopy combined with an oil microscopy method. Journal of Food Science, 2022, 87 (8): 3407- 3418.
doi: 10.1111/1750-3841.16234 |
|
Wang Y, Yao R L. Plantlet regeneration of adult Pinus massoniana Lamb. trees using explants collected in March and thidiazuron in culture medium. Journal of Forestry Research, 2017, 28 (6): 1169- 1175.
doi: 10.1007/s11676-017-0412-9 |
|
Wang Y, Yao R L. Indole-3-acetic acid accelerates root system development in tissue culture of mature Pinus massoniana Lamb. trees. Propagation of Ornamental Plants, 2019, 19 (3): 85- 92. | |
Wang Y, Yao R L. Increased endogenous gibberellin level inhibits root growth of Pinus massoniana Lamb. plantlets during long-term subculture. In Vitro Cellular & Developmental Biology-Plant, 2020, 56 (4): 470- 479. | |
Yang F, Fan Y F, Wu X L, et al. Auxin-to-gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Frontiers in Plant Science, 2018, 9, 56.
doi: 10.3389/fpls.2018.00056 |
|
Yao R L, Fang S Z, Shang X L, et al. Cytochemical localization of ATPase and sub-cellular variation in mesophyll cell of Cyclocarya paliurus seedlings under iso-osmotic stress and calcium regulation. Journal of Forestry Research, 2009, 20 (4): 343- 348.
doi: 10.1007/s11676-009-0058-3 |
|
Zheng L L, She M H, Ai B L, et al. Construction and properties of an amyloid fiber ferulic acid chitosan double network hydrogel and its inhibition of AGEs activity. Food Hydrocolloids, 2023, 139, 8536. | |
Zhu W H, Qi J G, Chen J D, et al. Identification of GA2ox family genes and expression analysis under gibberellin treatment in pineapple (Ananas comosus (L.) Merr.). Plants, 2023, 12 (14): 2673.
doi: 10.3390/plants12142673 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||